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Abstract

Word representations are mathematical objects that capture a word’s meaning and its gram-
matical properties in a way that can be read and understood by computers. Word representa-
tions map words into equivalence classes such that words that share similar properties to each
other are part of the same equivalence class. Word representations are either constructed man-
ually by humans (in the form of word lexicons, dictionaries etc.) or obtained automatically
using unsupervised learning algorithms. Since, manual construction of word representations
is unscalable, and expensive, obtaining them automatically is desirable.

Traditionally, automatic learning of word representations has relied on the distributional
hypothesis, which states that the meaning of a word is evidenced by the words that occur in
its context (Harris, 1954). Thus, existing word representation learning algorithms like latent
semantic analysis (Deerwester et al., 1990; Landauer and Dumais, 1997), derive word meaning
in terms of aggregated co-occurrence counts of words extracted from unlabeled monolingual
corpora.

In this thesis, we diversify the notion of context to include information beyond the mono-
lingual distributional context. We show that information about word meaning is present in
other contexts like neighboring words in a semantic lexicon, context of the word across dif-
ferent languages, and the morphological structure of the word. We show that in addition to
monolingual distributional context these sources provide complementary information about
word meaning, which can substantially improve the quality of word representations. We
present methods to augment existing models of word representations to incorporate these
knowledge sources.
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Chapter 1

Introduction

What is word meaning? Anything that conveys information about how a word can be used
in a language, what information the word conveys, or how a given word is related to other
words in the language, can be said to represent the meaning of a word (Frege, 1884; De Saus-
sure, 1989). Understanding the meaning of words is essential for effective natural language
processing. For example, the word playing can mean taking part in a sport, participating
in an activity etc. Its part-of-speech is verb with gerund verb form. These are some of the
aspects of word meaning which help us identify the word’s role in a language. Thus, for
developing natural language processing models that can understand languages, its essential
to develop a structure that can capture aspects of word meaning in a form that is readable
and understandable by computers.

Word meaning representation (or generally called word representation) is a mathematical
object associated with each word, often a vector. Each dimension’s value corresponds to a
feature and might even have a semantic or grammatical interpretation (Turian et al., 2010).
Word representations map words into equivalence classes such that words that are similar to
each other are part of the same equivalence class. In this thesis we look at this aspect of word
meaning, which maps words into equivalence classes. For example, in word clusters, words
are grouped into a finite number of classes, and words in the same class are supposed to be
similar. In word vectors, words are represented in a continuous vector-space of fixed dimen-
sionality, and words that lie close together in this vector-space are supposed to be similar.

Another example of word representation are word lexicons. Word lexicons can contain
information about different linguistic properties of a language and relationship between dif-
ferent words, such as WordNet (Fellbaum, 1998), FrameNet (Baker et al., 1998), or morpho-
syntactic lexicons (Hajič and Hladká, 1998a). The morpho-syntactic attributes for the word
playing are Pos:Verb, VerbForm:Gerund, Tense:Present etc. which can be represented as
a vector where every dimension corresponds to a particular morpho-syntactic attribute. Al-
though such lexicons contain rich information about a word’s meaning, they are difficult to
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obtain as they are often constructed manually by humans. Thus, there is a need of methods
that can construct word representations readily without requiring expensive resources across
various languages.

The distributional hypothesis of Harris (1954) states that the meaning of words is ev-
idenced by the contexts they occur in. This hypothesis was famously articulated as “You
shall know a word by the company it keeps” by Firth (1957). For example, since the words playing,
jumping, and running might often occur with similar contextual words in a corpus, they should
have similar meaning, and thus similar word representations. Information about the nature
of occurrence of a word in a language is called word distributional information. Word dis-
tributional information can be easily captured from word co-occurrence statistics (how many
times a particular word occurs in the context of another word) computed from unlabeled text
corpora, which is the primary reason for popularity of distributional word representations
as word representations. The distributional hypothesis has motivated several effective tech-
niques for obtaining meaning representations of words using unannotated text corpora. These
techniques capture word meaning in the form of word clusters (Brown et al., 1992) or word
vectors (Turney and Pantel, 2010). These word representations are shown to reflect intuitions
about lexical semantics (Turney, 2001) and are also useful in downstream NLP applications
(Turian et al., 2010; Guo et al., 2014).

Although there is much evidence in favor of the distributional hypothesis, in this thesis
we show that the quality of word representations (as evaluated on a bunch of intrinsic and
extrinsic tasks) obtained using distributional information can be further improved by various
other sources that provide us information about the word’s meaning. Figure 1.1 shows the
different sources of information that we use to improve distributional word representations.
An example of an additional source of word meaning is the morphological structure of the
word itself (Faruqui et al., 2016). When a person reads the word played in English, they can
identify that this is probably the past tense of the verb play, because of the presence of the
suffix “-ed”. We present methods to include such sources of information about word meaning
in word representations. We experiment with a range of word representations that include
word clusters, word vectors and word lexicons. We show how semantic lexicons, morphology
and translational evidence can be incorporated into word meaning representations that have
been trained or constructed using distributional evidence.

1.1 Thesis Outline

This thesis consists of the following chapters:

• In chapter 3, we discuss the problem of evaluation of word vector representations. We
first discuss the conventional approaches to word vector evaluation and their shortcom-
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Figure 1.1: The three sources of information in addition to distributional context that we
integrate in word representation models.

ings. We then propose an intrinsic evaluation metric for word vector evaluation which
computes how well the dimensions in word vectors can quantify linguistic properties.

• In chapter 4, we first show how highly sparse, and binary word vectors can be con-
structed using information present solely in word lexicons, which we call non-distributional
word vectors. We then show how information present in manually or automatically con-
structed lexicons can be used to improve and construct word vector representations. We
present a method called retrofitting, to incorporate this information in word vectors.

• In chapter 5, we work with morpho-syntactic lexicons. A morpho-syntactic lexicon enu-
merates all possible morphological and syntactic roles that a word can display in a lan-
guage. Such lexicons are manually created and have low coverage. In many languages,
the morphological structure of a word can be used to identify some of its morpholog-
ical and syntactic roles. We present a graph-based method that expands a given seed
morpho-syntactic lexicon to the size of the vocabulary using morphological relations
between words in addition to distributional information.

• In chapter 6, we argue for incorporating translational context in addition to distribu-
tional context in word representations. We show that the translation of a word across
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languages contains important cues about the meaning of a word, which are not captured
in monolingual distributional context. First, we present a bilingual clustering model that
produces word clusters which are informed using both monolingual and translational
context. Next, we present a canonical correlation-based method that incorporates bilin-
gual context in word vector models.

• In chapter 7, we summarize the contributions of the thesis and provide directions for
future work.

1.2 Thesis Statement

In this thesis I advocate for models of word representation that are constructed not only from
the monolingual distributional information of the word but also from other sources such as
word lexicons, morphology, and translation of a word across languages. I take existing models
of word representations and provide methods to augment each one of them to utilize afore-
mentioned sources of word meaning information. I argue that developing models that capture
different views of word meaning and their interaction yields better informed word represen-
tations. I show that word representations obtained this way will show an improvement in
performance on downstream NLP tasks when used as features.

4



Chapter 2

Word Representations

The performance of machine learning methods relies heavily on the choice of data representa-
tion. Thus, much of the effort in deploying machine learning algorithms goes into the feature
engineering to best represent data in terms of features that can support effective machine
learning. Feature engineering is the process of using human knowledge and prior knowledge
about a task to come up with a set of representative features for the data. Even though good
feature engineering often translates to great results in machine learning tasks, its reliance on
manual labor makes it quite expensive.

In order to expand the ease of applicability of machine learning, it is desirable to make
learning algorithm less dependent on feature engineering. Representation learning is the learn-
ing of representations of the data that make it easier to extract useful information when build-
ing classifiers or other predictors (Bengio et al., 2013). Representation learning, when applied
to words used in natural language, generates word representations. Word representations
are mathematical objects that contain informative features about a word’s meaning. Learn-
ing word representations is of crucial importance in NLP, as naive mappings of raw text (for
example, bag of words) lose meaning of the word, and lead to high-dimensional, sparse repre-
sentations with heavy-tailed distributions. Word representations have been shown to be useful
in downstream NLP tasks like named entity recognition, POS-tagging, dependency parsing
(Turian et al., 2010; Guo et al., 2014; Bansal et al., 2014).

Learning word representations in NLP has traditionally relied on the distributional hy-
pothesis. Distributional information of words can be extracted from large unlabeled text cor-
pora which are available for many of the world’s languages. Thus, unsupervised learning of
word representations using the distributional hypothesis has become widely popular. There
are two major types of word representations that can be learned from corpora in an unsuper-
vised manner: word clusters and word vectors. The core of the word representation learning
algorithms is to find distributionally similar words and assign them word representations that
can map them into the same equivalence classes. For word cluster models, this means that

5
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wi-1 wi wi+1

Figure 2.1: Word clustering models of Brown et al. (1992) on the left, and Saul and Pereira
(1997) on the right. Word clusters in both models are induced through language modeling
using cluster-based models. Words are observed (grey nodes), and clusters are unobserved
variables (white nodes) which are induced by the word clustering algorithm.

distributionally similar words should be assigned to the same word cluster. For word vectors,
distributionally similar words should lie close together in vector space. We will now discuss
each of these in detail.

2.1 Word Clusters

A word cluster is a group of words which ideally captures syntactic, semantic, and distri-
butional regularities among the words belonging to the group. Representing a word by its
cluster id helps map many words to the same point, and hence leads to reduction in the num-
ber of parameters. For example, if the vocabulary of a language is of 100, 000 words, a naive
bag-of-words model would require 100, 000 parameters to represent all the words. However,
if we use a clustering algorithm to cluster the vocabulary in 100 groups, then we can represent
the whole vocabulary by just 100 parameters. The clustering scheme in which every word gets
assigned to one cluster is called hard clustering (Brown et al., 1992). The clustering scheme in
which a word can have multiple memberships in different clusters with different probabilities
is called soft clustering (Pereira et al., 1993).

In soft clustering, a word w can be presented as the collection of conditional probabilities
of different word clusters given the word: p(ci|w), where ci is a possible word cluster id
and ∑i p(ci|w) = 1. In hard clustering the word is assigned strictly to only one cluster, and
thus p(ci|w) = 1 for only a unique cluster ci, and thus ∀j 6=i p(ci|w) = 0. In these terms, soft
clustering is strictly more expressive than hard clustering. However, the ease of use of hard
word clusters as features in downstream tasks have made them pervasive in NLP (Bekkerman
et al., 2003; Turian et al., 2010). Hard clusters also provide a simple way of understanding
and interpreting word meaning: by looking at the words in a word cluster, once can inspect
if there are any commonalities that they share. For example, some words clusters might
contain semantically similar words (run, play, playground etc.) whereas some other cluster

6



might contain syntactically similar words (writing, walking, running etc.).
Word clusters can be learned from a corpus in an unsupervised fashion. Unlabeled corpora

of natural language text provides information about the distributional nature of words. Word
clustering models that cluster words according to their distributional information are called
distributional word clustering models. Other ways of clustering words are also possible, for
example, based on spelling features like capitalization or suffixes. Distributional word clusters
are shown to contain words that have similar semantic or syntactic meaning, and thus provide
useful feature for tasks which rely on the meaning of words like document classification (Baker
and McCallum, 1998; Dhillon et al., 2002). An example of a distributional word cluster from
Brown et al. (1992) is write, writing, pen, book etc. Clearly these words are semantically related
and representing them by the same cluster id can help reduce sparsity in the data.

Word clusters were originally obtained as a side-product in models that were designed to
perform language modeling. In language modeling, the task is to predict the next word in
a given sequence of previously observed words. If the previously observed word sequence
at time t is w1, w2, · · ·wt−1, then the task is to predict p(wt|w1, w2, · · ·wt−1). In an n-gram
language model, where the history is constrained to only the previous n − 1 words, this
probability can be written as p(wt|wt−n+1, wt−n+2, · · ·wt−1). In an n-gram language model,
we treat two histories as equivalent if they end in the same n− 1 words. For a vocabulary of
size V, an n-gram language model thus has O(Vn) independent parameters.

Such large number of parameters in an n-gram language model makes it difficult to achieve
reliable estimates. To avoid this problem, Brown et al. (1992) propose to perform language
modeling by partitioning the vocabulary of the language in a finite number of clusters, and
then modeling the sequence of words as emissions produced by a hidden sequence of clusters.
Concretely, every word is emitted by a hidden cluster that contains it, and the next cluster in
the sentence depends on the cluster of the previous word. Figure 2.1 shows the model used by
Brown et al. (1992) for language modeling. The number parameters of this model is C2 + VC,
where C is the number of clusters, and thus it’s linear in the size of the vocabulary.

The model of Brown et al. (1992) is a hidden-Markov model, with words as observed
sequence and clusters as the unobserved sequence. The parameters of the model are esti-
mated using the Baum-Welch algorithm, by performing a forward and reverse traversal on
the word sequence. Training this HMM over a large corpus effectively clusters the vocabulary
in word clusters. Saul and Pereira (1997) present an alternative model to perform language
modeling using a class-based model. The model proposed by them is shown to the right
in figure 2.1. The parameters in their model are the transition probabilities between words
and word classes. The advantage of their model over Brown et al. (1992) is that the parame-
ters can be easily estimated using EM algorithm without requiring multiple passes over the
word sequence. Word clusters can also be obtained using a matrix decomposition method
called spectral clustering (Ng et al., 2002), where the matrix can be constructed from word co-
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professorθ

Figure 2.2: Word similarity between a word pair is computed as cosine of the angle (θ) between
their word vectors.

occurrence counts computed over an unlabeled corpus (Goyal and Hovy, 2014). Overall, these
models show how word clusters can be obtained using distributional information extracted
from natural language text.

2.2 Word Vectors

Till now we have discussed how words can be represented using word clusters. One limitation
of word clusters is that they only provide similarity or difference between two words along
only one “dimension”. That is, either a pair of given words belong in the same word cluster or
not. Hinton (1984) argued that representations of entities should be represented by a pattern
of activity distributed over many concepts, and every concept can be involved in representing
many different entities. For example, princess is, as kind of a person, similar to man, and
woman, and as royally, similar to castle, and crown. In other words, there exists a many to
many mapping between concepts and entities, and such representations are called distributed
representations. We now discuss the distributed representation of words, commonly called
word vectors or word embeddings in detail.

A word vector is a finite dimensional vector of real numbers which represents a word in
the vector space. The dimensions stand for context items (for example, co-occurring words),
and the coordinates depend on the co-occurrence counts. The similarity between two words
can then be measured in terms of proximity in the vector space. One simple way of computing
word similarity between two words is the cosine similarity (cosine of the angle between the
two word vectors) between the two word vectors. Figure 2.2 shows three words in a two-
dimensional vector space. The similarity between the words cucumber and apple can be
computed as cosine(θ).

Word vectors can be learned from a corpus in an unsupervised fashion. We will now
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describe the approaches that use distributional information extracted from large unlabeled
corpora to construct word vectors. On a coarse grained scale, these methods can be divided
into two major sections: matrix factorization based spectral methods, and neural network
based embeddings methods. We now describe each one of these in enough detail to establish
the necessary foundation for the rest of the thesis.

2.2.1 Matrix Factorization Methods

Constructing a vector space of word meaning starts from extracting distributional information
from a text corpus. According to the distributional hypothesis, word-word co-occurrence is
indicative of a word’s meaning. Such word-word co-occurrence can be easily extracted from
text corpora. Consider the small sample corpus containing six sentences below:

The boy is playing in the field.
The boy is running in the field.

The boy is playing in the playground.
The girl is playing in the playground.

If we extract co-occurrence counts at the sentence level i.e., every word is said to be in the
context of another word in the same sentence, then we can represent the counts in the form of
the following matrix:

M =

playing running f ield playground boy girl


playing 0 0 1 2 2 1
running 0 0 1 0 1 0

f ield 1 1 0 0 2 0
playground 2 0 0 0 1 1

M is the matrix of co-occurrence counts of words in the corpus. The rows of M are representa-
tive of the words that we want to obtain the representations for (in this case, words related to
sports), and the columns of the matrix are the features that are important for determining the
word’s representations (in this case, all words except the stop words). Every row in the matrix
now is the vector representation of the word corresponding to the row. Thus, the similarity
between words field, and playground can be computed as cosine( ~field, ~playground) = 0.67.

Counts Weighting. The co-occurrence counts in the matrix can be weighted to give more
weight to more surprising elements and less weight to expected events. For example, in mea-
suring similarity between the words mouse and rat, the context dissect is more discriminative
than the contexts have or like. The counts in M can be replaced by the pointwise mutual in-
formation (PMI) (Church and Hanks, 1990), which is shown to work well for obtaining word
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vectors (Turney, 2002). Other variations of this score include the positive-PMI, which is more
interpretable (Bullinaria and Levy, 2007).

Context Features. Simple word-word co-occurrence has been shown to be a good source of
features for obtaining word vector representations that are semantic in nature, are useful in
semantic tasks like word similarity, synonym selection, text classification etc. Turney (2001).
However, the columns in the matrix M can also be designed to capture syntactic context of the
words, for example, by considering the context of a word to be words that are related to it by
a syntactic dependency relation in the sentence (Lin, 1998; Padó and Lapata, 2007; Baroni and
Lenci, 2011). Such contextual features are shown to yield word vectors that follow functional
similarity instead of the usual topical similarity (Levy and Goldberg, 2014a).

Another form of context that is often used for obtaining semantic word vectors in cross-
lingual context. The hypothesis behind using cross-lingual context is that if two words in one
language translate to the similar words in another language, then they might have similar
meaning (Bannard and Callison-Burch, 2005). Thus, if information about the translation of a
word is available through word alignments of word lexicons, then these translated words can
also be used as features in the columns of the word co-occurrence matrix (Utt and Padó, 2014;
Gardner et al., 2016). We will return to cross-lingual evidence in chapter 6.

Dimensionality Reduction. The rows of M are word vector representations according to the
distributional hypothesis, but the high dimensionality of the vectors (the number of columns
in the matrix is the magnitude of the order of the vocabulary size) can make it impractical to
use them. There are O(V2) order entries in the matrix which are estimated from a corpus,
and thus they are poorly estimated. Also, not all the dimensions in the matrix are useful, as
they might be pulling irrelevant noise, or information that is uninformative in discriminating
between word types. Further, lots of information in the matrix can be redundant as similar
words (when acting as column features) will provide similar evidence. Thus, its important to
represent the information present in the matrix in a lower dimensional space, where all the
dimensions provide informative features.

There are several ways of projecting a matrix into a lower dimensional space. The most
widely used such method is singular value decomposition (SVD). SVD decomposes M into
the product of three matrices UΣVᵀ, where U and V are in column orthonormal form (i.e., the
columns are orthogonal and have unit length, UᵀU = VᵀV = I) and Σ is a diagonal matrix of
singular values. If M is of rank r, then Σ is also of rank r. Let Σk, where k < r, be the diagonal
matrix formed from the top k singular values, and let Uk and Vk be the matrices produced by
selecting the corresponding columns from U and U. The matrix M̂ = UkΣkVᵀ

k is the matrix
of rank k that best approximates the original matrix M, in the sense that it minimizes the
approximation errors. That is, M̂ = UkΣkVᵀ

k minimizes ‖M̂−M‖F over all matrices M̂ of rank
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Figure 2.3: Feed-forward neural language model with window size 2 (left) and recurrent
neural language model (right). The models are predicting the next word “on” given the
previous words “the cat sat”.

k, where ‖ · · · ‖F denotes the Frobenius norm (Golub and Van Loan, 1996).
The lower dimensional projection using SVD has been qualitatively analysed to display the

properties of identifying the latent meaning from the rows and columns of the original matrix
(Deerwester et al., 1990; Landauer and Dumais, 1997), reducing the noise in the input matrix
M (Rapp, 2003), and discovering higher order co-occurrence among the rows (word vectors)
of the matrix (Lemaire and Denhiere, 2008). Other ways of obtaining lower dimensional rep-
resentations from a matrix include principal component analysis (PCA), independent compo-
nent analysis (ICA), non-negative matrix factorization (NMF), canonical correlation analysis
(CCA), CUR decomposition. Each of these methods have different pros and cons when com-
pared to SVD. The explanation of such methods is beyond the scope of this thesis, and we
refer the readers to available comprehensive survery in this field (Sayed and Kailath, 2001;
Koren et al., 2009).

2.2.2 Neural Word Embeddings

Word vector representations when trained as a part of a neural network aimed at solving
a particular task are called word embeddings. Such tasks can be divided into two major
categories: language modeling and co-occurrence prediction. Similar to the previous section
(§2.2.1) words will again be represented in terms of their context in a corpus, the difference
lies in the problem formulation. We now describe how word embeddings can be obtained
using such models.
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Language Modeling

Bengio et al. (2003) introduced a neural language model where the task is to predict the next
word given the previous words in a sentence. In their framework every word is represented as
a finite-dimensional vector of real numbers. The joint probability function of word sequences
is computed in terms of word vectors using a feed-forward neural network. Then the param-
eters of the neural network and the word embeddings can be trained by maximizing the log
likelihood of the model on the data using, for example, backpropagation and gradient ascent.

Language modeling using simple feed-forward networks can only take into account a fixed
number of words in the already observed sequence for making the next prediction. However,
recurrent neural network models that condition on the entire history of previously observed
words have been shown to significantly improve language modeling (Mikolov et al., 2010).
Even in the recurrent neural network models, words are represented as word vectors which
are optimized as part of the language modeling objective. Figure 2.3 shows the basic structure
of these models. In both models, the input words are used to compute a hidden layer which
is then used to predict the next word in the sequence using a softmax layer. The softmax
function computes the probability of observing every single word in the model’s vocabulary,
concretely:

p(wi|h) =
exp(Wh + b)i

∑j exp(Wh + b)j
(2.1)

where, W, b are model parameters, and h is the hidden layer vector computed for the predic-
tion. The computation in eq. 2.1 is performed for every word wi in the vocabulary.

Co-occurrence Prediction

Recent advances in training word embeddings have mostly relied on models that try to predict
a word in its context irrespective of the order of the words in the context (Mikolov et al., 2013a;
Mnih and Kavukcuoglu, 2013; Pennington et al., 2014). The fact that words occuring both to
the left and right of a given word are used to predict the word make such a setup different
from language modeling. In language modeling, the task is to predict the next word in the
sequence of previously observed words. Word embeddings trained using such models have
been shown to better represent the semantics of the word, as opposed to language modeling-
based approaches (Zhila et al., 2013; Faruqui and Dyer, 2014b).

In traditional neural models softmax is a costly computation as it computes the probability
of observing every single word in the model’s vocabulary (as the vocabulary keeps increasing
with corpus size according to Heaps’ law (Heaps, 1978)), which quickly makes it intractable
to be used with large amount of training data. These methods replace the costly softmax func-
tion used in traditional neural models by different approximations, such as noise-constrastive
estimation (Gutmann and Hyvärinen, 2010), negative sampling (Mikolov et al., 2013a), or hi-
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Figure 2.4: The CBOW or LBL (left) and Skip-Gram or iVLBL (right) models. In the sentence
the cat sat on the mat, the models are predicting the word on given the context (left) or the
context given the word on (right).

erarchical softmax (Goodman, 2001; Morin and Bengio, 2005). With these approximations the
computation at the last layer of the network becomes independent of the size of the vocabulary
making training possible. For details on these objectives we refer the reader to the original
papers and the summary by Dyer (2014).

Figure 2.4 shows the two main models that are used to predict co-occurring words. The
figure on the left predicts a word in the center given the contextual words on the left and right
side of the word in a sentence. The model predicts on, given words in its left and right context
in the sentence the cat sat on the mat. These models are called the continuous bag of words
(CBOW) and the log bilinear models (vLBL). The figure on the right predicts the words on the
left and right context of a given word in the sentence. Thus, the model learns to predicts the
contextual words given the word on. These models are called the skip-gram and the inverse
log bilinear model (ivLBL) (Mikolov et al., 2013a; Mnih and Kavukcuoglu, 2013).

2.2.3 Bridging Matrix Factorization & Neural Methods

Matrix factorization methods are attractive because they often obtain a global optimum us-
ing a closed form expression (for example, SVD, PCA, CCA etc.), whereas neural networks
converge to a local optimum. Matrix factorization methods have a closed form solution pro-
vides for stability in the output representations. Also, matrix factorization methods only rely
on aggregated co-occurrence counts of pairs of words, whereas neural methods require each

13



observation of a word in context to be presented separately. Neural methods usually use
stochastic gradient ascent to solve a non-convex objective function, which is hard to optimize
and thus rely heavily on initialization of parameters and the optimization algorithm. On the
other hand, a globally optimal solution is not always required, and the solution returned by
training the neural network models is shown to work well in practice (Goodfellow et al., 2015).

One limiting disadvantage of the matrix factorization methods is the absence of an associ-
ated probability density or an explanatory generative model. Having an associated probabil-
ity density would facilitate comparison of matrix factorization models to other probabilistic
models. Such an interpretation would also make it easier for matrix factorization models
to be directly used as components in larger probabilistic models. Motivated by such objec-
tives, previous research has shown that various matrix factorization algorithms can be seen
as performing optimization of a probabilistic objective (Salakhutdinov and Mnih, 2008). For
example, PCA has been shown to be solving a maximum likelihood objective (Tipping and
Bishop, 1999), which was then extended and generalized to CCA (Bach and Jordan, 2005).

Levy and Goldberg (2014b) show that the single layer neural network of skip-gram model
when trained using negative sampling, is equivalent to factorizing a matrix of word co-
occurrence counts weighted by shifted positive PMI (positive PMI values changed by a con-
stant amount). They showed that matrix decomposition is better at optimizing the objective
of the skip-gram (Mikolov et al., 2013a) and the log bilinear model (Mnih and Kavukcuoglu,
2013) both in terms of intrinsic error, and performance on downstream tasks. This result es-
tablishes that there is a trade-off between speed and accuracy while choosing the neural or
the matrix factorization models for learning word vectors. Matrix factorization methods are
more accurate in optimizing the intrinsic error, but constructing a large co-occurrence matrix
and performing matrix factorization on it requires expensive computational resources. Neural
models trained using gradient descent can support easier distributed computation, and are
faster to train (Dean et al., 2012).
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Chapter 3

Evaluation

Word representations are supposed to capture a word’s meaning in a language. However,
the concept of “meaning” is usually abstract and difficult to interpret. Different forms of
word representations capture different aspects of meaning. For example, distributional word
representations capture the co-occurrence statistics of a word with other words or phrases ex-
tracted from large unlabeled corpora, which provides evidence of its meaning. As discussed
in chapter 2, there are several different models which can be used to obtain word vector repre-
sentations. We want to evaluate the quality of these word vector representations irrespective
of the models that produced them. The models used to obtain these representations opti-
mize different loss functions, which makes it hard to compare the intrinsic quality of different
forms of word representations. Thus, there are two main issues with intrinsic evaluation of
the quality of word meaning representations:

• Abstract definition of word meaning

• Incompatible intrinsic evaluation scores across models

To do away with the problem of intrinsic quality evaluation, many existing tasks measure
how well the notion of word similarity according to humans is represented by word vectors
(§3.1). The most widely used such tasks are the word similarity evaluation tasks (Finkelstein
et al., 2002; Agirre et al., 2009), followed by the word analogy tasks (Mikolov et al., 2013b).
Word vectors are also evaluated on the basis of their utility as features in downstream tasks
like sentiment analysis, dependency parsing (§3.2). However, such evaluation tasks are mere
proxies, and there is no theoretical proof of how extrinsic evaluation is representative of the
quality of word vector representations.

In this chapter, we first describe the various tasks which are currently used as for evalua-
tion of word vectors. These tasks are used across the thesis for evaluation of word vectors. We
then present an evaluation metric, called Qvec, which is able to measure the intrinsic quality
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of word vectors across different models of word vector representations (§3.3).1 Qvec measures
how well the word vectors are able to quantify linguistic content of words. We show that this
intrinsic evaluation metric has strong correlation with the performance on word vectors on
downstream evaluation tasks.

3.1 Similarity Correlation Measures

We now describe the tasks that are used to evaluate how well word vectors are able to capture
the notion of word similarity and analogy.

3.1.1 Word Similarity

The task of word similarity evaluation measures how well does word similarity in the vec-
tor space correspond to the notion of word similarity according to humans. The datasets
are constructed using human crowdsourcing. A word similarity dataset consists of pairs of
words which are presented to humans for annotation, where every annotation measures how
similar the two words are as perceived by a human on a scale of 1-10 (or any other scale
provided individually for every dataset). These annotations are then aggregated across all
subjects to obtain an average measure of similarity between the two words. For example, pro-
fessor/cucumber receives 0.31 and dollar/buck receives 9.22 average rating. To measure how well
word vector representations capture word similarity in the vector space, we calculate similar-
ity between a given pair of words by the cosine similarity between their corresponding vector
representation, as shown in Figure 2.2. We then report Spearman’s rank correlation coefficient
(Myers and Well, 1995) between the rankings produced by the word vector model against the
human rankings.

There have been a number of word similarity datasets produced by the research com-
munity over time. There are currently more than 12 datasets that are exclusively used for
measuring the effectiveness of word vectors to capture word similarity, as we list on www.

wordvectors.org (Faruqui and Dyer, 2014a). The size of these datasets varies widely from
the smallest dataset containing as little as 30 word pairs (Miller and Charles, 1991) and the
largest containing 3000 word pairs (Bruni et al., 2012). We use a subset of these word similarity
datasets that are most widely used and are sufficiently large in size to control for instability
in results.

The first word similarity dataset is the WS-353 dataset (Finkelstein et al., 2001) containing
353 pairs of English words that have been assigned similarity ratings by humans. This was
the first word similarity dataset containing more than 100 word pairs and is still one of the
most widely used datasets. The second benchmark is the MEN dataset (Bruni et al., 2012).

1Previously published in Tsvetkov et al. (2015).
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Dataset Word pairs
WS-353 353
MEN 3000
SimLex 999

Table 3.1: Size of word similarity datasets used for evaluating word vector representations.

MEN contains 3000 pairs of randomly selected words to ensure a balanced range of similarity
levels in the selected word pairs. Each word pair is scored on a [0, 1]-normalized semantic
relatedness scale via ratings obtained by crowdsourcing on Amazon Mechanical Turk.

It has been claimed that the word pairs in WS-353 and MEN capture both similarity and
relatedness instead of exclusively capturing word similarity (Agirre et al., 2009; Hill et al., 2014).
For example, coffee/cup are rated more similar than train/car, even though train/car share many
common properties (function, material, dynamic behavior, wheels, windows etc.). Although
clearly different, coffee and cup are very much related. Thus, relatedness and similarity are
different concepts (Budanitsky and Hirst, 2006; Agirre et al., 2009). A new word similarity
dataset SimLex-999 (Hill et al., 2014) was created to model similarity in particular rather than
relatedness or association. It contains a balanced set of noun, verb and adjective pairs. This
is the third dataset that we use for measuring word similarity. Table 3.1 shows the sizes of
different word similarity datasets.

3.1.2 Word Analogy

Mikolov et al. (2013b) present two new semantic and syntactic relation dataset composed of
analogous word pairs. It contains pairs of tuples of word relations that follow a common
relation. For example, in England : London :: France : Paris, the two given pairs of words follow
the semantic country-capital relation. The semantic dataset (SEM-REL) contains three other
such kinds of relations: country-currency, man-woman, city-in-state and overall 8869 such
pairs of word tuples. The syntactic dataset (SYN-REL) contains nine such different kinds
of relations: adjective-adverb, opposites, comparative, superlative, present-participle, nation-
nationality, past tense, plural nouns and plural verbs. An example of the syntactic word
analogy is walk : walked :: talk : talked, where, in each pair, the second word is the past tense of
the first word. Overall there are 10675 such syntactic pairs of word tuples.

The task here is to find a word d that best fits the following relationship: a : b :: c : d given
a, b and c. Mikolov et al. (2013b) show that analogous word pairs exhibit linguistic regularity
in the vector space, for example:

xking − xman ≈ xqueen − xwoman (3.1)

where xw represents the vector of word w. Since king is the royal form of man, the vector
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Figure 3.1: Linguistic regularity shown between analogous word pairs. The dotted line con-
necting the words is the relation vector.

representing the relation between these two words should be the same as that between queen
and woman. Figure 3.1 shows the relationship between these word pairs in the vector space.

We use the vector offset method (Mikolov et al., 2013b) that computes the vector:

y = xa − xb + xc (3.2)

where, xa, xb and xc are vectors of words a, b and c respectively and returns the vector xw from
the whole vocabulary which has the highest cosine similarity to y:

xw = arg max
w∈V−{a,b,c}

xw · y
|xw| · |y|

(3.3)

Here, w contains all words in the vocabulary except for the words in the query, i.e, w 6=
{a, b, c}. It is worth noting that this is a non-trivial |V|-way classification task where V is the
vocabulary of the language.

3.2 Extrinsic Evaluation

We now describe the extrinsic tasks that have been used in this thesis for evaluation of word
vectors. Extrinsic evaluation is important because we want to know how useful word vector
representations are in downstream tasks independent of their semantic analysis. The tasks
described here are chosen to evaluate different aspects of word meaning, such as semantics
and syntax.
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3.2.1 Sentiment Analysis

Sentiment analysis is the problem of identifying subjective information present in natural
language texts and classifying into different levels of polarity. Usually, texts that are indicative
of anger, sadness, frustration, unhappiness etc. are labeled as negative instances, whereas texts
indicative of happiness, joy, satisfaction etc. are labeled as positive instances of sentiment. For
example, the sentence “The movie had a great script” is labeled positive, and “The movie failed to
deliver anything exciting” is labeled negative. The task in sentiment analysis is to predict the
sentiment polarity label of a given text. We evaluate how informative are the features present
in word vector representations in the downstream task of sentiment analysis.

Pang and Lee (2005) created a dataset containing binary sentiment labels on sentences from
movie review excerpts. The coarse-grained dataset of positive and negative classes has been
split into training, development, and test datasets containing 6,920, 872, and 1,821 sentences,
respectively. This dataset was further annotated at the phrase level by Socher et al. (2013), but
we only use sentence-level annotations. Since our aim is to evaluate the utility of word vectors
as features in predicting sentiment, we train an `2-regularized logistic regression classifier on
the average of the word vectors of a given sentence to predict the coarse-grained sentiment
tag at the sentence level, and report the test-set accuracy of the classifier. If a sentence is
represented as a list of words~s = 〈w1, w2, . . . , wn〉, then the sentence vector can be obtained by
averaging the word vectors in the sentence, sometimes called a “bag of means” representation:

s =
∑n

i=1 wi

n
. (3.4)

3.2.2 Noun-Phrase Bracketing

We now evaluate if word vectors can be useful in predicting the correct parse structure of a
noun phrase. Blood pressure medicine: A machine to measure the blood pressure or a pressure
machine with blood? While our intuition based on the meaning of this phrase prefers the
former interpretations, the Stanford parser which lacks semantic features, incorrectly predicts
the latter as the correct parse.2 The correct syntactic parsing of sentences is clearly steered
by semantic information (Fillmore et al., 1968), and consequently the semantic plausibility of
other possible parses can provide crucial evidence about their validity. We want to see how
much of semantic information can be provided by word vector representations to resolve such
ambiguity in parsing of noun phrases.

Lazaridou et al. (2013) constructed a dataset from the Penn TreeBank (Marcus et al., 1993) of
noun phrases (NP) of length three words, where the first can be an adjective or a noun and the
other two are nouns. The task is to predict the correct bracketing in the parse tree for a given
noun phrase. For example, local (phone company) and (blood pressure) medicine exhibit right and

2http://nlp.stanford.edu:8080/parser/index.jsp
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left bracketing respectively. Since our aim is to evaluate the utility of word vectors as features
in predicting the bracketing, we only the word vectors of the three words as features in the
model. We append the word vectors of the three words in the noun phrase in order and use
them as features in an `2-regularized logistic regression classifier. The dataset contains 2227
noun phrases split into 10 folds. The classifier is tuned on the first fold and cross-validation
accuracy is reported on the remaining nine-folds.

3.3 Intrinsic Evaluation: Qvec

Till now we have discussed various tasks for extrinsic application of word vectors. Despite
their ubiquity, there is no standard scheme for intrinsically evaluating the quality of word
vectors: vector quality is traditionally judged by its utility in downstream NLP tasks. This
lack of standardized evaluation is due, in part, to word vectors’ major criticism: word vectors
are linguistically opaque in a sense that it is still not clear how to interpret individual vector
dimensions, and, consequently, it is not clear how to score a non-interpretable representa-
tion. Nevertheless, to facilitate development of better word vector models and for better error
analysis of word vectors, it is desirable,

1. To compare word vector models easily, without recourse to multiple extrinsic applica-
tions whose implementation and runtime can be costly

2. To understand how features in word vectors contribute to downstream tasks

3. To have a fast-to-compute evaluation metric

We propose a simple intrinsic evaluation measure for word vectors. Our measure is based
on component-wise correlations with manually constructed “linguistic” word vectors whose
components have well-defined linguistic properties. Since vectors are typically used to provide
features to downstream learning problems, our measure favors recall (rather than precision),
which captures our intuition that meaningless dimensions in induced vector representations
are less harmful than important dimensions that are missing. We thus align dimensions in
a distributional word vector model with the linguistic dimension vectors to maximize the
cumulative correlation of the aligned dimensions. The resulting sum of correlations of the
aligned dimensions is our evaluation score. Since the dimensions in the linguistic vectors are
linguistically-informed, the alignment provides an “annotation” of components of the word
vector space being evaluated. To show that our proposed score is meaningful, we compare
our intrinsic evaluation model to the standard (semantic) extrinsic evaluation benchmarks. For
nine off-the-shelf word vector representation models, Qvec obtains good correlation (0.34 ≤
r ≤ 0.89) with the extrinsic tasks.
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word nn.animal nn.food · · · vb.motion
fish 0.68 0.16 · · · 0.00
duck 0.31 0.00 · · · 0.69
chicken 0.33 0.67 · · · 0.00

Table 3.2: Oracle linguistic word vectors, constructed from a linguistic resource containing
semantic annotations.

3.3.1 Linguistic Dimension Word Vectors

The crux of our evaluation method lies in quantifying the similarity between a distributional
word vector model and a (gold-standard) linguistic resource capturing human knowledge. To
evaluate the semantic content of word vectors, we use an existing semantic resource—SemCor
(Miller et al., 1993). From the SemCor annotations we construct a set of linguistic word vectors,
as explained below. Table 3.2 shows an example of the vectors.

WordNet (Fellbaum, 1998, WN) partitions nouns and verbs into coarse semantic cate-
gories known as supersenses (Ciaramita and Altun, 2006; Nastase, 2008).3 There are 41
supersense types: 26 for nouns and 15 for verbs, for example, noun.body, noun.animal,
verb.consumption, or verb.motion. SemCor is a WordNet-annotated corpus that captures,
among others, supersense annotations of WordNet’s 13,174 noun lemmas and 5,686 verb lem-
mas at least once. We construct term frequency vectors normalized to probabilities for all
nouns and verbs that occur in SemCor at least 5 times. The resulting set of 4,199 linguistic
word vectors has 41 interpretable columns.

While we experiment with linguistic vectors capturing semantic concepts, our methodol-
ogy is generally applicable to other linguistic resources (Faruqui and Dyer, 2015). For example,
part-of-speech annotations extracted from a treebank would yield linguistic vectors capturing
syntactic content of vectors. As will be see in the next section that the runtime of Qvec is
linear in the number of linguistic dimensions, we start off with just SemCor and defer using
other resources to future work.

3.3.2 Qvec

We align dimensions of distributional word vectors to dimensions (linguistic properties) in
the linguistic vectors described in §3.3.1 to maximize the cumulative correlation of the aligned
dimensions. By projecting linguistic annotations via the alignments, we also obtain plausible
annotations of dimensions in the distributional word vectors. In this section, we formally
describe the model, which we call Qvec: quantitative and qualitative evaluation of word
vectors.

Let the number of common words in the vocabulary of the distributional and linguistic

3Supersenses are known as “lexicographer classes” in WordNet documentation, http://wordnet.princeton.
edu/man/lexnames.5WN.html
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Figure 3.2: The filled vertical vectors represent the word vector in the word vector matrix X and
the linguistic property matrix S. The horizontal hollow vectors represent the “distributional
dimension vector” in X and “linguistic dimension vector” in S. The arrows show mapping
between distributional and linguistic vector dimensions.

word vectors be N. We define, the distributional vector matrix X ∈ RD×N with every row as
a dimension vector x ∈ R1×N . D denotes word vector dimensionality. Similarly, S ∈ RP×N

is the linguistic property matrix with every row as a linguistic property vector s ∈ R1×N . P
is the size of the set of linguistic properties obtained from a manually-annotated linguistic
resource.

We obtain an alignment between the word vector dimensions and the linguistic dimensions
which maximizes the correlation between the aligned dimensions of the two matrices. This
is 1:n alignment: one distributional dimension is aligned to at most one linguistic property,
whereas one linguistic property can be aligned to n distributional dimensions, see figure 3.2.
Let A ∈ {0, 1}D×P be a matrix of alignments such that aij = 1 iff xi is aligned to sj, otherwise
aij = 0. If r(xi, sj) is the Pearson’s correlation between vectors xi and sj, then our objective is
defined as:

Qvec = max
A|∑j aij≤1

D

∑
i=1

P

∑
j=1

r(xi, sj)× aij (3.5)

The constraint ∑j aij ≤ 1, warrants that one distributional dimension is aligned to at most
one linguistic dimension. The total correlation between two matrices i.e., Qvec is our in-
trinsic evaluation measure of a set of word vectors relative to a set of linguistic properties.
Equation 3.5 can be solved easily as the objective is maximized when a linguistic dimension
is aligned to all possible distributional dimensions with which it has a positive correlation.
Thus, r(xi, sj)⇒ aij = 1. The complexity of the algorithm is O(DPN).

Qvec’s underlying hypothesis is that dimensions in distributional vectors correspond to
linguistic properties of words. It is motivated, among others, by the effectiveness of word
vectors in linear models implying that linear combinations of features (vector dimensions)
produce relevant, salient content. Via the alignments aij we obtain labels on dimensions in
the distributional word vectors. The magnitude of the correlation r(xi, sj) corresponds to the
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Model Qvec Senti
CBOW 40.3 90.0
SG 35.9 80.5
CWindow 28.1 76.2
SSG 40.5 81.2
Attention 40.8 80.1
GloVe 34.4 79.4
GloVe+WN 42.1 79.6
GloVe+PPDB 39.2 79.7
LSA 19.7 76.9
LSA+WN 29.4 77.5
LSA+PPDB 28.4 77.3
Correlation (r) 0.87

Table 3.3: Intrinsic (Qvec) and extrinsic scores of the 300-dimensional vectors trained using
different word vector models and evaluated on the Senti task. Pearson’s correlation between
the intrinsic and extrinsic scores is r = 0.87.

annotation confidence: the higher the correlation, the more salient the linguistic content of
the dimension. Clearly, dimensions in the linguistic matrix S do not capture every possi-
ble linguistic property, and low correlations often correspond to the missing information in
the linguistic matrix. Thus, Qvec is a recall-oriented measure: highly-correlated alignments
provide evaluation and annotation of vector dimensions, and missing information or noisy
dimensions do not significantly affect the score since the correlations are low.

3.3.3 Evaluation

To test Qvec, we select a diverse suite of popular/state-of-the-art word vector models. All
vectors are trained on 1 billion tokens (213,093 types) of English Wikipedia corpus with vec-
tor dimensionality 50, 100, 200, 300, 500, 1000. These word vector models are described in
appendix A. We compare the Qvec to six standard semantic tasks for evaluating word vec-
tors. In addition to word similarity tasks: WS-353, MEN, SimLex (§3.1.1), sentiment analysis
(§3.2.1), we use two additional text classification and metaphor predictions tasks (appendix B)
in the evaluation suite.

To test the efficacy of Qvec in capturing the semantic content of word vectors, we evaluate
how well Qvec’s scores correspond to the scores of word vector models on semantic bench-
marks. We compute the Pearson’s correlation coefficient r to quantify the linear relationship
between the scorings. We begin with comparison of Qvec with one extrinsic task—sentiment
analysis (Senti)—evaluating 300-dimensional vectors.

As we show in table 3.3, the Pearson’s correlation between the intrinsic and extrinsic scores
is r = 0.87. To account for variance in word2vec representations (due to their random initial-
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WS-353 MEN SimLex 20NG Metaphor Senti
r 0.34 0.63 0.68 0.74 0.75 0.88

Table 3.4: Pearson’s correlations between Qvec scores of the 300-dimensional vectors trained
using different word vector models and the scores of the downstream tasks on the same
vectors.

20NG Metaphor Senti
WS-353 0.55 0.25 0.46
MEN 0.76 0.49 0.55
SimLex 0.56 0.44 0.51
Qvec 0.74 0.75 0.88

Table 3.5: Pearson’s correlations between word similarity/Qvec scores and the downstream
text classification tasks.

ization and negative sampling strategies, the representations are different for each run of the
model), and to compare Qvec to a larger set of vectors, we now train three versions of vector
sets per model. This results in 21 word vector sets: three vector sets per five word2vec models
plus GloVe, LSA, and retrofitting vectors (§4.2) shown in table 3.3. The Pearson’s correlation
computed on the extended set of comparison points (in the same experimental setup as in
table 3.3) is r = 0.88. In the rest of this section we report results on the extended suite of word
vectors.

We now extend the table 3.3 results, and show correlations between the Qvec and extrinsic
scores across all benchmarks for 300-dimensional vectors. Table 3.4 summarizes the results.
Qvec obtains high positive correlation with all the semantic tasks. Table 3.5 shows, for the
same 300-dimensional vectors, that Qvec’s correlation with the downstream text classification
tasks is on par with or higher than the correlation between the word similarity and text
classification tasks. Higher correlating methods—in our experiments, Qvec and MEN—are
better predictors of quality in downstream tasks.

Next, we measure correlations of Qvec with the extrinsic tasks across word vector models
with different dimensionality. The results are shown in figure 3.3. It can be seen that Qvec

shows strong correlation with extrinsic evaluation tasks and the correlations remain almost
constant across different dimensionality of word vectors. However, for word similarity tasks
the correlation varies as the dimensionality changes, even more so for WS-353. To summarize,
we observe high positive correlation between Qvec and the downstream tasks, consistent
across the tasks and across different models with vectors of different dimensionalities.

Since Qvec favors recall over precision (for aligning distributional dimensions to linguistic
dimensions), larger numbers of dimensions will naturally result in higher scores. We there-
fore impose the restriction that Qvec only be used to compare vectors of the same size, but we
now show that its correlation with downstream tasks is stable, conditional on the size of the
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Figure 3.3: Pearson’s correlation between Qvec scores and the semantic benchmarks across
word vector models on vectors of different dimensionality. The scores at dimension 300 cor-
respond to the results shown in table 3.4. The scores in the legend show average correlation
across dimensions.

50 100 200 300 500 1000
ρ(Qvec, All) 0.66 0.59 0.63 0.65 0.62 0.59

Table 3.6: Spearman’s rank-order correlation between the Qvec ranking of the word vector
models and the ranking produced by the aggregated ranking of all tasks across dimensionality
size.

vectors being compared. We aggregate rankings by individual downstream tasks into a global
ranking using the Kemeny–Young rank aggregation algorithm, for each dimension separately
(Kemeny, 1959). The algorithm finds a ranking which minimizes pairwise disagreement of
individual rankers. Table 3.6 shows Spearman’s rank correlation between the rankings pro-
duced by the Qvec and the aggregated ranking across all tasks. The correlation score across
different dimensions is fairly stable with a mean of 0.63 and standard deviation of 0.03.

3.3.4 Discussion

Across different experiments we have observed that Qvec is strongly correlated with perfor-
mance of word vectors on downstream NLP tasks like sentiment analysis, metaphor predic-
tion, and text classification. However, its correlation with traditional word similarity tasks is
not consistent across different datasets. Specifically, the lowest correlation scores are obtained
for the most widely used task WS-353 (Finkelstein et al., 2002). Recent work on lexical simi-
larity have shown that WS-353 dataset gives high scores to word which are either similar (car
& train) or related (coffee & cup), and thus it should not be used for measuring word similarity
(Agirre et al., 2009; Hill et al., 2014). Such results are confirmed by our experiments which
show that Qvec is more strongly correlated with the improved word similarity datasets such
as MEN and SimLex which model word similarity exclusively.
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Qvec favors recall over precision, thus larger numbers of dimensions will naturally result
in higher scores—but not necessarily higher correlations with downstream tasks. Thus, in its
current form Qvec can only be used to compare vectors of the same size. Qvec is not scale-
invariant, thus an affine transformation of given word vectors will produce a different score.
These problems of Qvec have been addressed and resolved by Ammar et al. (2016), who use
canonical correlation analysis (CCA) to compute the correlation between distributional and
linguistic word vector dimensions. The resultant evaluation score is named Qvec+. Since
CCA is scale-invariant, and independent of the number of dimensions of the input vectors,
the score provided by Qvec+ overcomes the limitations of the Qvec. However, since CCA
does not produce explicit alignments between the linguistic and distributional vectors, it’s
unclear if Qvec+ provides a way of interpretation of distributional dimensions in terms of
linguistic properties.

3.4 Conclusion

In this chapter, we first described various evaluation benchmarks that are currently being
used for evaluation of word vector representations actively in the research community. We
then discussed the limitations associated with evaluation carried out on these benchmarks,
which leads us to propose a method for intrinsic evaluation of word vectors. Our method
is named Qvec, and it relies on the hypothesis that the uninterpretable dimensions of word
vector representations encode certain linguistic proeprties of the words. Thus, Qvec is de-
signed to quantify the linguistic content of word vectors. Our proposed model shows strong
relationship—both linear and monotonic—with the scores/rankings produced by the down-
stream tasks.
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Chapter 4

Lexicons

Word lexicons, which provide type-level information about the semantics or syntax of words,
should be a valuable resource in constructing word meaning representations. Examples of
such word lexicons include WordNet (Miller, 1995), FrameNet (Baker et al., 1998), Paraphrase
Database (Ganitkevitch et al., 2013), morpho-syntactic lexicons (Hajič and Hladká, 1998a; Trón
et al., 2006), inter alia. The information provided by these lexicons might or might not be re-
dundant with distributional evidence – a question that we will explore now. In this chapter, we
evaluate the utility of lexicons in constructing and improving word vector representations. We
first evaluate how informative are word lexicons in constructing word vector representations
in a stand-alone setting i.e., we do not use any sort of distributional evidence in ascertaining
the meaning of a word. We show that word vectors constructed using such purely non-
distributional information are competitive to methods of obtaining distributional word vec-
tors (§4.1). After establishing the value of lexicons in obtaining word vector representations,
we propose a method named “retrofitting” that can use word relations knowledge found in
semantic lexicons to improve the quality of distributional word vector representations (§4.2).1

4.1 Lexicons as Non-distributional Word Vectors

Our motivation of using linguistic lexicons to construct word vector representations is two-
fold. First, we want to evaluate how useful such lexicons are in obtaining the meaning of a
word, and how well that competes against various models of distributional word representa-
tions. Second, we want to see if we can overcome some of the weaknesses of distributional
word vectors models, such as lack of interpretability by constructing vectors from lexicons as
discussed next.

Distributional word vectors lie in a continuous space which does not look anything like
the representations described in most lexical semantic theories, which focus on identifying

1This chapter contains work that was previously published in Faruqui and Dyer (2015) and Faruqui et al. (2015).
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classes of words (Levin, 1993; Baker et al., 1998; Schuler, 2005; Miller, 1995). Though expen-
sive to construct, conceptualizing word meanings symbolically is important for theoretical
understanding and interpretability is desired in computational models. On the surface, dis-
crete theories seem incommensurate with the distributed approach, a problem now receiving
much attention in computational linguistics: relating the discrete nature of traditional syn-
tactic and semantic theories with the continuous nature of word representations (Lewis and
Steedman, 2013; Kiela and Clark, 2013; Paperno et al., 2014).

Our contribution to this discussion is a new technique that constructs task-independent
word vector representations using linguistic knowledge derived from pre-constructed lin-
guistic resources like WordNet (Miller, 1995), FrameNet (Baker et al., 1998), Penn Treebank
(Marcus et al., 1993) etc. In such word vectors every dimension is a linguistic feature and 1/0
indicates the presence or absence of that feature in a word, thus the vector representations are
binary while being highly sparse (≈ 99.9%). Since these vectors do not encode any word co-
occurrence information, they are “non-distributional”. An additional benefit of constructing
such vectors is that they are fully interpretable i.e, every dimension of these vectors maps to
a linguistic feature unlike distributional word vectors where the vector dimensions have no
interpretability.

Of course, engineering feature vectors from linguistic resources is established practice
in many applications of discriminative learning; e.g., parsing (McDonald and Pereira, 2006;
Nivre, 2008) or part of speech tagging (Ratnaparkhi, 1996; Collins, 2002). However, despite a
certain common inventories of features that re-appear across many tasks, feature engineering
tends to be seen as a task-specific problem, and engineered feature vectors are not typically
evaluated independently of the tasks they are designed for. We evaluate the quality of our
non-distributional vectors on a number of tasks that have been proposed for evaluating dis-
tributional word vectors. We show that non-distributional word vectors are comparable to
current state-of-the-art distributional word vectors trained on billions of words.2

4.1.1 Feature Extraction

We construct non-distributional word vectors by extracting word level information from lin-
guistic resources. Table 4.1 shows the size of vocabulary and number of features induced
from every lexicon. We now describe various linguistic resources that we use for constructing
non-distributional word vectors.

WordNet. WordNet (Miller, 1995) is an English lexical database that groups words into sets
of synonyms called synsets and records a number of relations among these synsets or their
members. For a word we look up its synset for all possible part of speech (POS) tags that it

2These vectors can be downloaded at: https://github.com/mfaruqui/non-distributional
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Lexicon Vocabulary Features
WordNet 10,794 92,117
Supersense 71,836 54
FrameNet 9,462 4,221
Emotion 6,468 10
Connotation 76,134 12
Color 14,182 12
Part of Speech 35,606 20
Syn. & Ant. 35,693 75,972
Union 119,257 172,418

Table 4.1: Sizes of vocabulary and features induced from different linguistic resources.

Word Pol.Pos Color.Pink SS.Noun.Feeling PTB.Verb · · · Anto.Fair

love 1 1 1 1 0
hate 0 0 1 1 0
ugly 0 0 0 0 1
beauty 1 1 0 0 0
refundable 0 0 0 0 0

Table 4.2: Some non-distributional word vectors. 1 indicates presence and 0 indicates absence
of a linguistic feature.

can assume. For example, film will have Synset.Film.V.01 and Synset.Film.N.01 as features
as it can be both a verb and a noun. In addition to synsets, we include the hyponym (for
ex. Hypo.CollageFilm.N.01), hypernym (for ex. Hyper:Sheet.N.06) and holonym set of the
word as features. We also collect antonyms and pertainyms of all the words in a synset and
include those as features in the linguistic vector.

Supersenses. WordNet partitions nouns and verbs into semantic field categories known as
supersenses (Ciaramita and Altun, 2006; Nastase, 2008). For example, lioness evokes the su-
persense SS.Noun.Animal. These supersenses were further extended to adjectives (Tsvetkov
et al., 2014a).3 We use these supsersense tags for nouns, verbs and adjectives as features in the
non-distributional word vectors.

FrameNet. FrameNet (Baker et al., 1998; Fillmore et al., 2003) is a rich linguistic resource that
contains information about lexical and predicate-argument semantics in English. Frames can
be realized on the surface by many different word types, which suggests that the word types
evoking the same frame should be semantically related. For every word, we use the frame it
evokes along with the roles of the evoked frame as its features. Since, information in FrameNet
is part of speech (POS) disambiguated, we couple these feature with the corresponding POS
tag of the word. For example, since appreciate is a verb, it will have the following features:

3http://www.cs.cmu.edu/~ytsvetko/adj-supersenses.tar.gz
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Verb.Frame.Regard, Verb.Frame.Role.Evaluee etc.

Emotion & Sentiment. Mohammad and Turney (2013) constructed two different lexicons
that associate words to sentiment polarity and to emotions respectively using crowdsourcing.
The polarity is either positive or negative but there are eight different kinds of emotions like
anger, anticipation, joy etc. Every word in the lexicon is associated with these properties. For
example, cannibal evokes Pol.Neg, Emo.Disgust and Emo.Fear. We use these properties as
features in non-distributional vectors.

Connotation. Feng et al. (2013) construct a lexicon that contains information about connota-
tion of words that are seemingly objective but often allude nuanced sentiment. They assign
positive, negative and neutral connotations to these words. This lexicon differs from Mo-
hammad and Turney (2013) in that it has a more subtle shade of sentiment and it extends to
many more words. For example, delay has a negative connotation Con.Noun.Neg, floral has a
positive connotation Con.Adj.Pos and outline has a neutral connotation Con.Verb.Neut.

Color. Most languages have expressions involving color, for example green with envy and grey
with uncertainly are phrases used in English. The word-color association lexicon produced by
Mohammad (2011) using crowdsourcing lists the colors that a word evokes in English. We
use every color in this lexicon as a feature in the vector. For example, Color.Red is a feature
evoked by the word blood.

Part of Speech Tags. The Penn Treebank (Marcus et al., 1993) annotates naturally occurring
text for linguistic structure. It contains syntactic parse trees and POS tags for every word in
the corpus. We collect all the possible POS tags that a word is annotated with and use it
as features in the non-distributional vectors. For example, love has PTB.Noun, PTB.Verb as
features.

Synonymy & Antonymy. We use Roget’s thesaurus (Roget, 1852) to collect sets of synony-
mous words.4 For every word, its synonymous word is used as a feature in the linguistic
vector. For example, adoration and affair have a feature Syno.Love, admissible has a feature
Syno.Acceptable. The synonym lexicon contains 25,338 words after removal of multiword
phrases. In a similar manner, we also use antonymy relations between words as features in the
word vector. The antonymous words for a given word were collected from Ordway (1913).5 An
example would be of impartiality, which has features Anto.Favoritism and Anto.Injustice.
The antonym lexicon has 10,355 words. These features are different from those induced from

4http://www.gutenberg.org/ebooks/10681
5https://archive.org/details/synonymsantonyms00ordwiala
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Vector Length Corpus Size WS-353 MEN SimLex Senti NP Qvec

SG 300 300 billion 65.6 67.8 43.6 81.5 80.1 34.6
Glove 300 6 billion 60.5 73.7 36.9 77.7 77.9 34.2
LSA 300 1 billion 67.3 70.5 49.6 81.1 79.7 35.0
Ling Sparse 172,418 – 44.6 45.3 56.6 79.4 83.3 –
Ling Dense 300 – 45.4 43.8 57.8 75.4 76.2 37.9
SG ⊕ Ling Sparse 172,718 – 67.1 69.1 55.5 82.4 82.8 –

Table 4.3: Performance of different type of word vectors on evaluation tasks reported by
Spearman’s correlation (first 3 columns), Accuracy (next 2 columns), and Qvec score. Bold
shows the best performance for a task.

WordNet as the former encode word-word relations whereas the latter encode word-synset
relations.

After collecting features from the various linguistic resources described above we obtain
non-distributional word vectors of length 172,418 dimensions. These vectors are 99.9% sparse
i.e, each vector on an average contains only 34 non-zero features out of 172,418 total fea-
tures. On average a linguistic feature (vector dimension) is active for 15 word types. The
non-distributional word vectors contain 119,257 unique word types. Table 4.2 shows non-
distributional vectors for some of the words.

4.1.2 Evaluation

In order to make our non-distributional vectors comparable to publicly available distributional
word vectors, we perform singular value decompostion (SVD) on the linguistic matrix to
obtain word vectors of lower dimensionality. If L ∈ {0, 1}N×D is the linguistic matrix with N
word types and D linguistic features, then we can obtain U ∈ RN×K from the truncated SVD of
L as follows: L = UΣV>, with K being the desired length of the lower dimensional space. We
compare both sparse and dense non-distributional vectors to three widely used distributional
word vector models. The first two are the pre-trained Skip-Gram (Mikolov et al., 2013a)6 and
Glove (Pennington et al., 2014)7 word vectors each of length 300, trained on 300 billion and 6
billion words respectively. We used truncated SVD to obtain word vectors trained on 1 billion
words of Wikipedia with vector length 300 and context window of 5 words (cf. appendix A).

Table 4.3 shows the performance of different word vector types on the evaluation tasks. It
can be seen that although Skip-Gram, Glove & LSA perform better than non-distributional vec-
tors on WS-353, the non-distributional vectors outperform them by a huge margin on SimLex.
On sentiment analysis, non-distributional vectors are competitive with Skip-Gram vectors and
on the NP-bracketing task they outperform all distributional vectors with a statistically signif-
icant margin (p < 0.05, McNemar’s test (Dietterich, 1998)). On Qvec, the non-distributional

6https://code.google.com/p/word2vec
7http://www-nlp.stanford.edu/projects/glove/
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dense vectors perform better than all the distributional vectors. This can be expected as the
non-distributional vectors are constructed with features extracted from WordNet, which are
used in the Qvec linguistic matrix.8 We append the sparse non-distributional vectors to Skip-
Gram vectors and evaluate the resultant vectors as shown in the bottom row of Table 4.3. The
combined vector outperforms Skip-Gram on all tasks, showing that non-distributional vectors
contain useful information orthogonal to distributional information.

4.1.3 Discussion

It is evident from the results that non-distributional vectors are either competitive or better
to state-of-the-art distributional vector models. Non-distributional word vectors are sparse,
which makes them computationally easy to work with, despite the large number of dimen-
sions. In contrast to distributional word vectors, non-distributional word vectors have in-
terpretable dimensions as every dimension is a linguistic property. Non-distributional word
vectors require no training as there are no parameters to be optimized, meaning they are
computationally economical.

An obvious shortcoming of non-distributional word vectors is that their coverage is limited
to only words that have been observed in the available lexicons. This limits the extension
of obtaining non-distributional word vectors to different languages, and good quality non-
distributional word vectors may only be obtained for languages with rich linguistic resources.
However, it’s worth noting that such resources do exist in many major languages like English,
French, German, Chinese. and thus non-distributional vectors can be constructed for these
languages in future. Nonetheless, we have established that word lexicons can be used to
construct sparse, and interpretable word vectors that are competitive to current state-of-the-
art models of distributional word representations.

4.2 Lexicons as Additional Evidence

Having established the importance of lexicons as sources of information in obtaining word
vector representations in the previous section, in this section we present a method that can
use such rich information present in word lexicons to improve the quality of distributional
word vectors. Even though the existing models of distributional word vectors have shown to
be extremely effective in capturing word meaning, we argue that the information contained in
word lexicons can still provide guidance to such distributional word vectors to enhance their
quality.

Word lexicons provide information about the relations between a word and other words.
Such kind of relational information can be useful in identifying words which should have

8Qvec can only be used to compare vectors with equal dimensionality in the version presented in this thesis.
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Figure 4.1: Word graph with edges between related words showing the observed and the
inferred word vector representations.

similar (or different) word vectors. For exmaple, if we know that words like false and incorrect
are synonyms, then we would expect them to have word vectors that lie close together in the
vector space. We want to enforce such constraints on word vectors using information obtained
from word lexicons in order to improve the quality of word vectors.

Recent work has shown that by either changing the objective of word vector training algo-
rithms in neural language models (Yu and Dredze, 2014; Xu et al., 2014; Bian et al., 2014) or by
relation-specific augmentation of the co-occurence matrix in spectral word vector models (Yih
et al., 2012; Chang et al., 2013) to incorporate semantic knowledge, the quality of word vectors
can be improved. However, these methods are limited to particular methods for constructing
vectors. We present a graph-based learning technique for leveraging lexical relational re-
sources to obtain higher quality semantic vectors, which we call “retrofitting” (Faruqui et al.,
2015). In contrast to previous work, retrofitting is applied as a post-processing step by running
belief propagation on a graph constructed from lexicon-derived relational information to up-
date word vectors (§4.2). The vectors obtained after applying retrofitting are called retrofitted
vectors. Intuitively, this method encourages the retrofitted vectors to be:

• similar to retrofitted vectors of related word types

• similar to their purely distributional vectors

Thus, we extend the distributional hypothesis by showing that in addition to monolingual
word co-occurrences, the words related to a given word in semantic lexicons also help in
evidencing the meaning of the word.

33



4.2.1 Retrofitting

Let V = {w1, . . . , wn} be a vocabulary, i.e, the set of word types, and Ω be an ontology that
encodes semantic relations between words in V. We represent Ω as an undirected graph (V, E)
with one vertex for each word type and edges (wi, wj) ∈ E ⊆ V × V indicating a semantic
relationship of interest.

The matrix Q̂ will be the collection of vector representations q̂i ∈ Rd, for each wi ∈ V,
learned using a standard data-driven technique, where d is the length of the word vectors. Our
objective is to learn the matrix Q = (q1, . . . , qn) such that the columns are both close (under
a distance metric) to their counterparts in Q̂ and to adjacent vertices in Ω. Figure 4.1 shows
a small word graph with such edge connections; white nodes are labeled with the Q vectors
to be retrofitted (and correspond to VΩ); shaded nodes are labeled with the corresponding
vectors in Q̂, which are observed. The graph can be interpreted as a Markov random field
(Kindermann and Snell, 1980).

The distances between a pair of vectors is defined to be the Euclidean distance. Since we
want the inferred word vector to be close to the observed value q̂i and close to its neighbors
qj, ∀j such that (i, j) ∈ E, the objective to be minimized becomes:

Ψ(Q) =
n

∑
i=1

αi‖qi − q̂i‖2 + ∑
(i,j)∈E

βij‖qi − qj‖2


where α and β values control the relative strengths of associations.

In this case, we first train the word vectors independent of the information in the semantic
lexicons and then retrofit them. Ψ is convex in Q and its solution can be found by solving a
system of linear equations. However, since there are a very large number of variables (n× d),
directly solving this equation is expensive, so we use an efficient iterative updating method
(Bengio et al., 2006; Subramanya et al., 2010; Das and Petrov, 2011; Das and Smith, 2011). We
take the first derivative of Ψ with respect to one qi vector, and by equating it to zero arrive at
the following update rule:

qi =
∑j:(i,j)∈E βijqj + αiq̂i

∑j:(i,j)∈E βij + αi
(4.1)

In practice, running this procedure for 10 iterations converges to changes in Euclidean distance
of adjacent vertices of less than 10−2. The vectors in Q are initialized to be equal to the vectors
in Q̂. The retrofitting approach described above can be applied to word vector representations
obtained from any model as the updates in Eq. 4.1 are agnostic to the original vector training
model objective.

Retrofitting, in its current form as described in this thesis, is designed only to work with
words having similar meaning and can only pull word vectors with similar meaning closer
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Lexicon Words Edges
PPDB 102,902 374,555
WordNetsyn 148,730 304,856
WordNetall 148,730 934,705
FrameNet 10,822 417,456

Table 4.4: Size of the graphs obtained from different lexicons.

in the vector space. However, it has been extended to incorporate other relation types which
signify change in meaning, such an antonymous relations as described in Mrkšić et al. (2016),
a method they call “counter-fitting”. Similar to retrofitting, counter-fitting pulls word vectors
of words with similar meaning together but also includes another term in the objective which
pushes away word vectors of antonymous words.

4.2.2 Semantic Lexicons during Learning.

Our proposed approach is reminiscent of recent work on improving word vectors using lexical
resources (Yu and Dredze, 2014; Bian et al., 2014; Xu et al., 2014) which alters the learning
objective of the original vector training model with a prior (or a regularizer) that encourages
semantically related vectors (in Ω) to be close together, except that our technique is a applied
after learning, rather than in conjunction with learning. We describe the prior approach here
since it will serve as a baseline. Here semantic lexicons play the role of a prior on Q which
we define as follows:

p(Q) ∝ exp

−γ
n

∑
i=1

∑
j:(i,j)∈E

βij‖qi − qj‖2

 (4.2)

Here, γ is a hyper-parameter that controls the strength of the prior. As in the retrofitting
objective, this prior on the word vector parameters forces words connected in the lexicon
to have close vector representations as did Ψ(Q) (with the role of Q̂ being played by cross
entropy of the empirical distribution).

This prior can be incorporated during learning through maximum a posteriori (MAP)
estimation. Since there is no closed form solution of the estimate, we consider two iterative
procedures. In the first, we use the sum of gradients of the log-likelihood (given by the extant
vector learning model) and the log-prior probability (from Eq. 4.2), with respect to Q for
learning. Since computing gradient of Eq. 4.2 is linear in the vocabulary size n, we use lazy
updates (Carpenter, 2008) for every k words during training. We call this the lazy method of
MAP. The second technique applies stochastic gradient ascent to the log-likelihood, and after
every k words applies the update in Eq. 4.1. We call this the periodic method.
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4.2.3 Graph Construction

We use three different semantic lexicons to evaluate their utility in improving the word vectors.
We construct word graphs using these lexicons which are then used for retrofitting. Table 5.2
shows the size of the graphs obtained from these lexicons.

PPDB. The paraphrase database Ganitkevitch et al. (2013) is a semantic lexicon containing
more than 220 million paraphrase pairs of English.9 Of these, 8 million are lexical (single
word to single word) paraphrases. The key intuition behind the acquisition of its lexical
paraphrases is that two words in one language that align, in parallel text, to the same word in
a different language, should be synonymous. For example, if the words jailed and imprisoned
are translated as the same word in another language, it may be reasonable to assume they
have the same meaning. In our experiments, we instantiate an edge in E for each lexical
paraphrase in PPDB. The lexical paraphrase dataset comes in different sizes ranging from S to
XXXL, in decreasing order of paraphrasing confidence and increasing order of size. We chose
XL for our experiments. We want to give higher edge weights (αi) connecting the retrofitted
word vectors (q) to the purely distributional word vectors (q̂) than to edges connecting the
retrofitted vectors to each other (βij), so all αi are set to 1 and βij to be degree(i)−1 (with i
being the node the update is being applied to).10

WordNet. We extract pairs of words from WordNet which are connected by synonymy, hy-
pernymy, or hyponymy relations. For example, the word dog is a synonym of canine, a hyper-
nym of puppy and a hyponym of animal. We perform two different experiments with WordNet:
(1) connecting a word only to synonyms, and (2) connecting a word to synonyms, hypernyms
and hyponyms.11 We refer to these two graphs as WNsyn and WNall, respectively. In both
settings, all αi are set to 1 and βij to be degree(i)−1.

FrameNet. In predicate-argument semantics, a frame can be realized on the surface by many
different word type. For example, the frame Cause_change_of_position_on_a_scale is associ-
ated with push, raise, and growth (among many others). In our use of FrameNet, two words
that group together with any frame are given an edge in E. We refer to this graph as FN. All
αi are set to 1 and βij to be degree(i)−1.

9http://www.cis.upenn.edu/~ccb/ppdb
10In principle, these hyperparameters can be tuned to optimize performance on a particular task, which we

leave for future work.
11We ignore the word senses present in WordNet, thus merging all senses of the word together. Sense-specific

retrofitting was extended in Jauhar et al. (2015).
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Lexicon MEN SimLex WS-353 SYN-REL Senti
Glove 73.7 37.0 60.5 67.0 79.6
+PPDB 1.4 12.5 -1.2 -0.4 1.6
+WNsyn 0.0 7.3 0.5 -12.4 0.7
+WNall 2.2 10.0 0.7 -8.4 0.5
+FN -3.6 -0.9 -5.3 -7.0 0.0

SG 67.8 43.6 65.6 73.9 81.2
+PPDB 5.4 11.0 4.4 -2.3 0.9
+WNsyn 0.7 3.2 0.0 -13.6 0.7
+WNall 2.5 7.6 1.9 -10.7 -0.3
+FN -3.2 -3.0 -4.9 -7.3 0.5

GC 31.3 9.7 62.3 10.9 67.8
+PPDB 7.0 12.1 2.0 5.3 1.1
+WNsyn 3.6 6.7 0.6 -1.7 0.0
+WNall 6.7 7.5 2.3 -0.6 0.2
+FN 1.8 3.8 0.0 -0.6 0.2

Multi 75.8 28.7 68.1 45.5 81.0
+PPDB 3.8 12.9 6.0 4.3 0.6
+WNsyn 1.2 6.9 2.2 -12.3 1.4
+WNall 2.9 9.3 4.3 -10.6 1.4
+FN 1.8 2.5 0.0 -0.6 0.2

Table 4.5: Absolute performance changes with retrofitting. Spearman’s correlation (3 left
columns) and accuracy (2 right columns) on different tasks. Bold indicates highest improve-
ment for a vector type.

4.2.4 Evaluation

We use retrofitting to improve four different pre-trained vectors: Glove, Skip-Gram (SG),
Global Context (GC) and Cross-lingually enriched (Multi, obtained as part of this thesis, de-
tails in §6.2). These vectors are described in appendix A.

Retrofitting Results. Table 4.5 shows the absolute changes in performance on different tasks
(as columns) with different semantic lexicons (as rows). All of the lexicons offer high im-
provements on the word similarity tasks (the first three columns). For the extrinsic sentiment
analysis task, we get improvements using all the lexicons and gain 1.4% (absolute) in accu-
racy for the Multi vectors over the baseline. This increase is statistically significant (p < 0.01)
according to McNemar’s test.

We get improvements on all tasks except for SYN-REL, over Glove and SG vectors, which
were trained on billions of tokens. For higher baselines (Glove and Multi) we get smaller
improvements as compared to lower baseline scores (SG and GC). We believe that FrameNet
does not perform as well as the other lexicons because its frames group words based on ab-
stract concepts; often words with seemingly distantly related meanings (e.g., push and growth)
can evoke the same frame. Interestingly, we almost never improve on the SYN-REL task, es-
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Vectors Qvec

SG 34.6
SG + PPDB 38.5
SG + WordNetsym 37.9
SG + WordNetall 41.0
SG + FrameNet 37.1

Table 4.6: Qvec score for intrinsic evaluation of skip-gram vectors before and after retrofitting
with different lexicons (higher is better).

pecially with higher baselines, this can be attributed to the fact that SYN-REL is inherently
a syntactic task and during retrofitting we are including semantic information in the vectors.
In summary, we find that PPDB gives the best graph among those tested, closely followed by
WNall and retrofitting gives consistent gains across tasks and vectors.

Intrinsic evaluation with Qvec. We proposed Qvec as an intrinsic evaluation metric for
word vectors in section 3.3. Qvec measures how well the dimensions in distributional word
vectors quantify the linguistic content of the words. Table 4.6 shows the Qvec score for skip-
gram vectors, before and after retrofitting. Using retrofitting the score increases using all the
semantic lexicons, and the highest improvement is obtained for retrofitting with WordNetall ,
followed by PPDB. This is expected as the linguistic properties used inside Qvec contain only
supersenes at the moment, which are derived from WordNet.

Semantic Lexicons during Learning. To incorporate lexicon information during training,
and compare its performance against retrofitting, we train log-bilinear (LBL) vectors (Mnih
and Teh, 2012). These vectors are trained to optimize the log-likelihood of a language model
which predicts a word token w’s vector given the set of words in its context (h), also repre-
sented as vectors:

p(w | h; Q) ∝ exp

(
∑
i∈h

q>i qj + bj

)
(4.3)

We optimize the above defined posterior along with the prior defined in eq. 4.2 using the two
lazy and periodic techniques mentioned in §4.2. Since it is costly to compute the partition
function over the whole vocabulary, we use noise contrastive estimation (NCE) to estimate the
parameters of the model (Mnih and Teh, 2012) using AdaGrad (Duchi et al., 2010) with a
learning rate of 0.05.

We train vectors of length 100 on the WMT-2011 news corpus, which contains 360 million
words and use PPDB as the semantic lexicon as it performed reasonably well in the retrofitting
experiments. For the lazy method we update the prior every k = 100,000 words12 and test
for different values of prior strength γ ∈ {1, 0.1, 0.01}. For the periodic method, we update

12k = 10000, 50000 yielded similar results.
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Method k/γ MEN WS-353 SYN-REL Senti
LBL (Baseline) k = ∞, γ = 0 58.0 53.6 31.5 72.5

LBL + Lazy
γ = 1 -0.4 0.6 0.6 1.2

γ = 0.1 0.7 0.4 0.7 0.8
γ = 0.01 0.7 1.7 1.9 0.4

LBL + Periodic
k = 100M 3.8 3.6 4.8 1.3

k = 50M 3.4 4.4 0.6 1.9
k = 25M 0.5 2.7 -3.7 0.8

LBL + Retrofitting – 5.7 5.5 14.7 0.9

Table 4.7: Absolute performance changes for including PPDB information while training LBL
vectors. Spearman’s correlation (2 left columns) and accuracy (2 right columns) on different
tasks. Bold indicates highest improvement.

Corpus Vector Training MEN WS-353 SYN-REL Senti

WMT-11
CBOW 55.2 54.7 40.8 74.1
Yu and Dredze (2014) 50.1 53.7 29.9 71.5
CBOW + Retrofitting 60.5 58.4 52.5 75.7

Wikipedia
SG 76.1 67.8 40.3 73.1
Xu et al. (2014) – 68.3 44.4 –
SG + Retrofitting 65.7 69.0 49.9 74.6

Table 4.8: Comparison of retrofitting for semantic enrichment against Yu and Dredze (2014),
Xu et al. (2014). Spearman’s correlation (2 left columns) and accuracy (2 right columns) on
different tasks.

the word vectors using Eq. 4.1 every k ∈ {25, 50, 100} million words. See Table 4.7. For lazy,
γ = 0.01 performs best, but the method is in most cases not highly sensitive to γ’s value. For
periodic, which overall leads to greater improvements over the baseline than lazy, k = 50M
performs best, although all other values of k also outperform the the baseline. It can be seen
that retrofitting performs either better or competitively to using semantic knowledge during
training.

Comparisons to Prior Work. Two previous models that leverage semantic information from
lexicons (Yu and Dredze, 2014; Xu et al., 2014) have shown that the quality of word vectors
obtained using word2vec tool can be improved by using semantic knowledge from lexicons.
Both these models use constraints among words as a regularization term on the training
objective during training, and their method can only be applied for improving the quality of
SG and CBOW vectors produced by the word2vec tool.

We first compare our model to Yu and Dredze (2014). We train word vector using their
joint model training code13 while using exactly the same training settings as specified in their
best model: CBOW model, vector length 100 and PPDB for enrichment. The results are shown
in the top half of Table 4.8 where our model consistently outperforms the baseline and their

13https://github.com/Gorov/JointRCM
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Language Task SG Retrofitted SG
German RG-65 53.4 60.3
French RG-65 46.7 60.6
Spanish MC-30 54.0 59.1

Table 4.9: Spearman’s correlation for word similarity evaluation using the using original and
retrofitted SG vectors.

model. Next, we compare our model to Xu et al. (2014). This model extracts categorical and
relational knowledge among words from Freebase14 and uses it as a constraint while training.
We train the SG model by using exactly the same settings as described in their system (vector
length 300) and on the same corpus: monolingual English Wikipedia text.15 We compare
the performance of our retrofitting vectors on the SYN-REL and WS-353 task against the
best model16 reported in their paper. As shown in the lower half of Table 4.8, our model
outperforms their model by an absolute 5.5 points absolute on the SYN-REL task and obtains
a gain on the WS-353 task as well.

Multilingual Evaluation. We tested our method on three additional languages: German,
French, and Spanish. We used the Universal WordNet (de Melo and Weikum, 2009), an au-
tomatically constructed multilingual lexical knowledge base based on WordNet.17 It contains
words connected via different lexical relations to other words both within and across lan-
guages. We construct separate graphs for different languages (i.e., only linking words to other
words in the same language) and apply retrofitting to each. Since not many word similarity
evaluation benchmarks are available for languages other than English, we tested our baseline
and improved vectors on one benchmark per language.

We used RG-65 (Gurevych, 2005), RG-65 (Joubarne and Inkpen, 2011) and MC-30 (Hassan
and Mihalcea, 2009) for German, French and Spanish, respectively. These benchmarks were
created by translating the corresponding English benchmarks word by word manually. We
trained SG vectors for each language of length 300 on a corpus of 1 billion tokens, each
extracted from Wikipedia, and evaluate them on word similarity on the benchmarks before
and after retrofitting. Table 4.9 shows that we obtain high improvements which strongly
indicates that our method generalizes across these languages.

4.2.5 Analysis

Retrofitting vs. vector length. Upon increasing vector length, the vector might be able to
capture higher orders of semantic information and retrofitting might have a diminishing effect.

14https://www.freebase.com/
15http://mattmahoney.net/dc/enwik9.zip
16Their best model is named RC-NET in their paper.
17http://www.mpi-inf.mpg.de/yago-naga/uwn
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Figure 4.2: Spearman’s correlation on SG and SG + Retrofitting vectors on MEN word simi-
larity task.

Figure 4.3: Two-dimensional PCA projections of 100-dimensional SG vectors of syntactic anal-
ogy “adjective to adverb” relation, before (left) and after (right) retrofitting.

To confirm the robustness of retrofitting, we train SG vectors on 1 billion English tokens for
vector lengths ranging from 50 to 1000 and evaluate it on the MEN word similarity task. We
retrofit these vectors to PPDB and evaluate those on the same task. Figure 4.2 shows that by
retrofitting we observe consistent improvement in vector quality for different vector lengths.

Qualitative visualization. We randomly pick eight word pairs that follow the “adjective to
adverb” relation from the SYN-REL task. We then take a two-dimensional PCA projection of
these word vectors and plot them in R2. In figure 4.3 we plot 100 dimensional SG vectors
before (left) and after (right) retrofitting. It can be seen that in the first case the direction of
the analogy vectors is not consistent but after retrofitting all the analogy vectors are aligned
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in the same direction.

4.3 Conclusion

In this chapter, we showed that information stored in word lexicons is useful in obtaining
word vectors, and improving existing distributional word vectors. We first showed that we
can construct non-distributional word vectors by collecting information stored in word lexi-
cons. These word vectors are highly sparse and binary, where every dimension represents a
linguistic attribute. Thus, such vectors are fully interpretable. When compared against stan-
dard distributional word vector models, these vectors exhibited comparable performance on
a variety of evaluation benchmarks.

Having shown the importance of word lexicons on constructing word vector representa-
tions, we next presented a method called retrofitting, that can improve the quality of distri-
butional word vectors by incorporating information stored in semantic lexicons. Retrofitting
is used as a post-processing step to improve vector quality and is simpler to use than other
approaches that use semantic information while training. It can be used for improving vectors
obtained from any word vector training model and performs better than current approaches
to semantic enrichment of word vectors. In summary, we have shown how word vector rep-
resentations obtained using monolingual distributional information can be further improved
by using evidence from a word’s neighborhood in a semantic lexicon. Firth might paraphrase
this as “You shall know a word by its introduction from a lexicographer”.
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Chapter 5

Morphology

In most languages many words can be related to other words by rules that collectively describe
the grammar for that language. For example, English speakers recognize that the words play
and played are closely related, differentiated only by the inflection corresponding to the past
tense marker suffix "-ed". Such relationships between words are a byproduct of the compo-
sitional structure of the morphemes in a word (Nida, 1949; Bauer, 2003). These morphemes
present in a word combine together to generate the meaning of a word. Inflection is the word-
formation mechanism to express different grammatical categories such as tense, mood, voice,
aspect, person, gender, number, case, inter alia. Inflectional morphology is often realized by
the concatenation of bound morphemes (prefixes and suffixes) to a root form or stem, but
nonconcatenative processes such as ablaut and infixation are found in many languages as
well (Stump, 2001). Thus, the morphological structure of a word provides informative signals
about its meaning. Firth might paraphrase this as “You shall know a word by its morphological
structure”.1

Till now in the thesis, we have explored what information about a word’s meaning can be
obtained by looking at its neighboring words in its distributional context, and by looking at
its neighboring words in semantic lexicons. In other words, we have looked for evidence of
a word’s meaning outside the word. In this chapter we instead will look inside the word i.e.,
we will look at the morphological structure of the word to gain evidence about the word’s
meaning. In particular, we will be asking the following questions: Does inflectional morphol-
ogy provide information about word’s meaning? Is this information useful in addition to
distributional information, or is it redundant? How can we use such source of information to
obtain word representations?

1This chapter contains work that was previously published in Faruqui et al. (2016).
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played POS:Verb, Tense:Past, VForm:Fin, VForm:Part, Voice:Pass, Mood:Ind

playing POS:Verb, POS:Noun, Tense:Pres, VForm:Ger, Num:Sing, VForm:part

awesome POS:Adj, Degree:Pos

Paris POS:Propn, Num:Sing

Table 5.1: A sample English morpho-syntactic lexicon.

5.1 Morpho-syntactic Lexicons

There exist manually constructed lexicons that contain information about the morphological
attributes and syntactic roles of words in a given language. These lexicons are generally called
“morpho-syntactic lexicons”. A typical lexicon contains all possible attributes that can be dis-
played by a word. Table 5.1 shows some entries in a sample English morpho-syntactic lexicon.
The word playing can act both as POS:Verb, and POS:Noun in the language, and thus both the
attributes are present in the lexicon. A morpho-syntactic lexicon, by definition, contains all
possible attributes, and only a subset of these are displayed by a word in a particular context.
As morpho-syntactic lexicons contain rich linguistic information, they are useful as features in
downstream NLP tasks like machine translation (Nießen and Ney, 2004; Minkov et al., 2007;
Green and DeNero, 2012), part of speech tagging (Schmid, 1994; Denis et al., 2009; Moore,
2015), dependency parsing (Goldberg et al., 2009), language modeling (Arisoy et al., 2010) and
morphological tagging (Müller and Schuetze, 2015) inter alia. However, there are three major
factors that limit the use of such lexicons in real world applications:

1. They are often constructed manually and are expensive to obtain (Kokkinakis et al., 2000;
Dukes and Habash, 2010)

2. They are currently available for only a few languages

3. Size of the available lexicons is generally small

We present a method that takes as input a small seed lexicon (like table 5.1), containing
a few thousand annotated words, and outputs an automatically constructed lexicon which
contains morpho-syntactic attributes (henceforth referred to as attributes) for a large number
of words of a given language. We model the problem of morpho-syntactic lexicon generation
as a graph-based semi-supervised learning problem (Zhu et al., 2005; Bengio et al., 2006; Sub-
ramanya and Talukdar, 2014). We construct a graph where nodes represent word types and
the goal is to label them with attributes. The seed lexicon provides attributes for a subset of
these nodes. Nodes are connected to each other through edges that denote features shared be-
tween them or surface morphological transformation between them. Our model relies on the
principle of compositionality for morphology according to which the morphemes in a word
collectively assign meaning to a word. Thus, our model exploits how similar or different the
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morphemes between a pair of words are to identify how the attribute distribution of the two
words’ should be related.

Our entire framework of lexicon generation, including the label propagation algorithm
and the feature extraction module is language independent. We only use word-level morpho-
logical, semantic and syntactic relations between words that can be induced from unannotated
corpora in an unsupervised manner. One particularly novel aspect of our graph-based frame-
work is that edges are featurized. Some of these features measure similarity, e.g., singular
nouns tend to occur in similar distributional contexts as other singular nouns, but some also
measure transformations from one inflection to another, e.g., adding a “ed” suffix could in-
dicate flipping the Tense:Pres attribute to Tense:Past (in English). For every attribute to be
propagated, we learn weights over features on the edges separately. This is in contrast to
traditional label propagation, where edges indicate similarity exclusively (Zhu et al., 2005). In
spirit our model learns how transformations and shared features between words correspond
to the variation of attributes between them, similar to how Eisner (2002) learn probabilities for
PCFG rules in terms of transformations between them.

To evaluate the model, we construct lexicons in 11 languages of varying morphological
complexity. We perform intrinsic evaluation of the quality of generated lexicons obtained
from either the universal dependency treebank or created manually by humans (§5.4). We
show that these automatically created lexicons provide useful features in two extrinsic NLP
tasks which require identifying the contextually plausible morphological and syntactic roles:
morphological tagging (Hajič and Hladká, 1998b; Hajič, 2000) and syntactic dependency pars-
ing (Kübler et al., 2009). We obtain an average of 15.4% and 5.3% error reduction across 11
languages for morphological tagging and dependency parsing respectively on a set of pub-
licly available treebanks (§5.5). We anticipate that the lexicons thus created will be useful in a
variety of NLP problems.

5.2 Graph Construction

The approach we take propagates information over lexical graphs (§5.3). In this section we
describe how to construct the graph that serves as the backbone of our model. We construct a
graph in which nodes are word types and directed edges are present between nodes that share
one or more features. Edges between nodes denote that there might be a relationship between
the attributes of the two nodes, which we intend to learn. As we want to keep our model
language independent, we use edge features that can be induced between words without
using any language specific tools. To this end, we describe three features in this section that
can be obtained using unlabeled corpora for any given language.2 Fig. 5.1 shows a subgraph

2Some of these features can cause the graph to become very dense making label propagation prohibitive. We
keep the size of the graph in check by only allowing a word node to be connected to at most 100 other (randomly
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play played

playing

run

running

clus:20 prefix:pl, suffix:{null}:ed

prefix:pl

suffix:ing:ed
clus:15

suffix:ing

suffix:{null}:ning prefix:pl

suffix:{null}:ing

Figure 5.1: A subgraph from the complete graph of English showing different kinds of features
shared on the edges between words. Some possible features/edges have been removed for
enhancing clarity.

of the full graph constructed for English.

Word Clusters. Previous work has shown that unlabeled text can be used to induce unsu-
pervised word clusters which can improve the performance of many NLP tasks in different
languages (Clark, 2003; Koo et al., 2008; Turian et al., 2010; Faruqui and Padó, 2010; Täckström
et al., 2012a; Owoputi et al., 2013). Word clusters capture semantic and syntactic similarities
between words, for example, play and run are present in the same cluster. We obtain word
clusters by using exchange clustering algorithm (Kneser and Ney, 1993b; Martin et al., 1998;
Uszkoreit and Brants, 2008) to cluster words present in a large unlabeled corpus. As in Täck-
ström et al. (2012a), we use one year of news articles scrapped from a variety of sources and
cluster only the most frequent 1M words into 256 different clusters. An edge was introduced
for every word pair sharing the same word cluster and a feature for the cluster is fired. Thus,
there are 256 possible cluster features on an edge, though in our case only a single one can
fire.

Suffix & Prefix. Suffixes are often strong indicators of the morpho-syntactic attributes of a
word (Ratnaparkhi, 1996; Clark, 2003). For example, in English, -ing denotes gerund verb
forms like, studying, playing and -ed denotes past tense like studied, played etc. Prefixes like
un-, in- often denote adjectives. Thus we include both 2-gram and 3-gram suffix and prefix as
edge features.3 We introduce an edge between two words sharing a particular suffix or prefix
feature.

Morphological Transformations. Soricut and Och (2015) presented an unsupervised method
of inducing prefix- and suffix-based morphological transformations between words using
word embeddings. In their method, statistically, most of the transformations are induced
between words with the same lemma (without using any prior information about the word

selected) word nodes sharing one particular feature. This reduces edges while still keeping the graph connected.
3We only include those suffixes and prefixes which appear at least twice in the seed lexicon.
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lemma). For example, their method induces the transformation between played and playing as
suffix:ed:ing. This feature indicates Tense:Past to turn off and Tense:Pres to turn on.4 We
train the morphological transformation prediction tool of Soricut and Och (2015) on the news
corpus (same as the one used for training word clusters) for each language. An edge is intro-
duced between two words that exhibit a morphological transformation feature from one word
to another as indicated by the tool’s output.

Motivation for the Model. To motivate our model, consider the words played and playing.
They have a common attribute POS:Verb but they differ in tense, showing Tense:Past and
Tense:Pres resp. Typical graph-propagation algorithms model similarity (Zhu et al., 2005)
and thus propagate all attributes along the edges. However, we want to model if an attribute
should propagate or change across an edge. For example, having a shared cluster feature,
is an indication of similar POS tag (Clark, 2003), but a surface morphological transformation
feature like suffix:ed:ing possibly indicates a change in the tense of the word. Thus, we will
model attributes propagation/transformation as a function of the features shared on the edges
between words. The features described in this section are especially suitable for languages that
exhibit concatenative morphology, like English, German, Greek etc. and might not work very
well with languages that exhibit non-concatenative morphology i.e., where root modification
is highly frequent like in Arabic and Hebrew. However, it is important to note that our
framework is not limited to just the features described here, but can incorporate any arbitrary
information over word pairs.

5.3 Graph-based Label Propagation

We now describe our model. Let W = {w1, w2, . . . , w|W|} be the vocabulary with |W| words
and A = {a1, a2, . . . , a|A|} be the set of lexical attributes that words in W can express; e.g.
W = {played, playing, . . .} and A = {Num:Sing, Num:Plur, Tense:Past, . . .}. Each word type
w ∈ W is associated with a vector aw ∈ [−1, 1]|A|, where ai,w = 1 indicates that word w has
attribute i and ai,w = −1 indicates its absence; values in between are treated as degrees of
uncertainty. For example, Tense:Pastplayed = 1 and Tense:Pastplaying = −1.5

The vocabulary W is divided into two disjoint subsets, the labeled words L for which we
know their aw’s (obtained from seed lexicon)6 and the unlabeled words U whose attributes
are unknown. In general |U| � |L|. The words in W are organized into a directed graph with
edges E between words. Let, vector φ(w, v) ∈ [0, 1]|F| denote the features on the directed edge
between words w and v, with 1 indicating the presence and 0 the absence of feature fk ∈ F,

4Our model will learn the following transformation: Tense:Past: 1→ -1, Tense:Present: -1→ 1 (§5.3).
5We constrain ai,w ∈ [−1, 1] as its easier to model the flipping of an attribute value from −1 to 1 as opposed to

[0, 1]. This will be clearer soon.
6We use labeled, seed, and training lexicon to mean the same thing interchangeably.
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where, F = { f1, f2, . . . , f|F|} are the set of possible binary features shared between two words
in the graph. For example, the features on edges between playing and played from Fig. 5.1 are:

φk(playing, played) =



1, if fk = suffix:ing:ed

1, if fk = prefix:pl

0, if fk = suffix:ly

. . .

Our model can be seen as an Ising model (Ising, 1925). Ising model is a mathematical
model of ferromagnetism in statistical mechanics. The model consists of discrete variables
that represent magnetic dipole moments of atomic spins that can be in one of two states (+1
or -1). The energy of an Ising model, which determines its stability is defined in terms of
the interactions between the spins of the consecutive atoms. In our model, words are atoms,
and the value of the attribute ai,w is the spin of the word. We posit that the attribute ai of
a word only interacts with the same attribute ai of its neighbours in the model. Thus, our
model is equivalent to |A| independent Ising models, every Ising model representing one
single attribute. The energy of an Ising model i, with attribute distribution σi = 〈ai,w|w ∈ W〉
is given by:

H(σi) = −∑
w

∑
v∈N(w)

Jw,vai,wai,v (5.1)

where, N(w) are the neighbors of w in the graph, and Jw,v is the strength of interaction or the
edge weight between w and v. The probability of observing a particular attribute distribution
σi on the graph then is:

P(σi) =
e−H(σi)

Z
(5.2)

where, Z is the normalization factor. Obtaining the σi which can maximize P(σi) is an NP-
complete problem (Cipra, 2000). However, the naïve mean field approximation, which focuses
on one spin and assumes that the most important contribution to the interactions of such spin
with neighbouring spins is determined by the mean field due to its neighboring spins, can
approximate the behavior of Ising models in equilibrium. The naïve mean field approximation
of the Ising model is given by ai,w = tanh(∑v∈N(w) Jw,vai,v) (Opper and Winther, 2001; Wang
et al., 2007).

In our model, we define the strength of interaction or the edge weight between two nodes
by Jw,v = φ(w, v) · θi. Here, θi ∈ R|F| is weight vector of the edge features for estimat-
ing attribute ai, and ‘·’ represents dot product betwen two vectors. The set of such weights
θ ∈ R|A|×|F| for all attributes are the model parameters that we learn. Now we can use the
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following iterative update, similar to the retrofitting rule:

âi,w = tanh

(
∑

v∈N(w)

(φ(w, v) · θi)× ai,v

)
(5.3)

where, âi,w is the empirical estimate of the attribute. Intuitively, one can view the node to
node message function from v to w: φ(w, v) · θi × ai,v as either:

1. Supporting the value ai,v when φ(w, v) · θi > 0

2. Inverting ai,v when φ(w, v) · θi < 0

3. Dampening or neutering ai,v when φ(w, v) · θi ≈ 0

Returning to our motivation, if w = played and v = playing, a feature indicating the suffix
substitution suffix:ed:ing should have a highly negative weight for Tense:Past, indicating a
change in value. This is because Tense:Past = -1 for playing, and a negative value of φ(w, v) · θi

will push it to positive for played.
It should be noted that this framework for constructing lexicons does not explicitly distin-

guish between morpho-syntactic paradigms, but simply identifies all possible attribute-values
a word can take. If we consider an example like “games” and two attributes, the syntactic
part-of-speech, POS, and number, Num, games can either be {POS:Verb, Num:Sing}, as in
John games the system; or {POS:Noun, Num:Plur}, as in The games have started. Our frame-
work will merely return that all the above attribute-values are possible, which implies that the
singular noun and plural verb interpretations are valid.

Our framework has three critical components, each described below: (1) model estimation,
i.e., learning θ; (2) label propagation to U; and optionally (3) paradigm projection to known
valid morphological paradigms. The overall procedure is illustrated in figure 5.2 and made
concrete in algorithm 1.

5.3.1 Edge Feature Weights Estimation

We estimate all individual elements of an attribute vector using eq. 5.3. We define loss as the
squared loss between the empirical and observed attribute vectors on every labeled node in
the graph, thus the total loss can be computed as:

∑
w∈L
‖aw − âw‖2

2 (5.4)

We train the edge feature weights θ by minimizing the loss function in eq. 5.4. In this step,
we only use labeled nodes and the edge connections between labeled nodes. As such, this
is strictly a supervised learning setup. We minimize the loss function using online adaptive
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<1, -1, …, -1>

<0, 0, …, 0> <0.2, 0.1, …, 0.9>

<1, -1, …, -1>

<0.2, 0.1, …, 0.9>

<-1, -1, …, -1>

<1, 1, …, 1>

<1, -1, …, 1>

<1, 1, …, -1>

Figure 5.2: Word graph with edges between words showing the labeled (grey) and the unla-
beled (white) word nodes. Only nodes connected via solid edges are visible to each other, dot-
ted edges block visibility. This figure demonstrates interaction between nodes during model
estimation (left), label propagation (center), and paradigm projection (right). Attribute-value
vectors of the words are shown in angled brackets. The solid edge in the right figure shows
the closest attribute paradigm to which the empirical vector is projected.

gradient descent (Duchi et al., 2010) with `2 regularization on the feature weights θ. This is
the first step in Algorithm 1 (lines 1–5).

5.3.2 Label Propagation

In the second step, we use the learned weights of the edge features to estimate the attribute
values over unlabeled nodes iteratively. The attribute vector of all unlabeled words is initial-
ized to null, ∀w ∈ U, aw = 〈0, 0, . . . , 0〉. In every iteration, an unlabeled node estimates its
empirical attributes by looking at the corresponding attributes of its labeled and unlabeled
neighbors using eq. 5.3, thus this is the semi-supervised step. We stop after the squared Eu-
clidean distance between the attribute vectors at two consecutive iterations for a node becomes
less than 0.1 (averaged over all unlabeled nodes). This is the second step in Algorithm 1 (lines
6–9). After convergence, we can directly obtain attributes for a word by thresholding: a word
w is said to possess an attribute ai if ai,w > 0.

5.3.3 Paradigm Projection

Since a word can be labeled with multiple lexical attributes, this is a multi-label classifica-
tion problem. For such a task, several advanced methods that take into account the correla-
tion between attributes have been proposed (Ghamrawi and McCallum, 2005; Tsoumakas and
Katakis, 2006; Fürnkranz et al., 2008; Read et al., 2011), here we have adopted the binary rele-
vance method which trains a classifier for every attribute independently of the other attributes,
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Data: W, L, U, A, F, P
Result: θ, labeled U

1 model optimization
2 while convergence do
3 for w ∈ L do
4 loss← ‖aw − âw‖2

2
5 Update θ using ∂loss

∂θ

6 label propagation
7 while convergence do
8 for w ∈ U do
9 aw ← âw

10 paradigm projection
11 for w ∈ U do
12 mindist← ∞, closest← ∅
13 for p ∈ P do
14 dist← ‖aw − p‖2

2
15 if dist < mindist then
16 mindist← dist, closest← p

17 aw ← closest

Algorithm 1: Graph-based semi-supervised label propagation algorithm.

for its simplicity (Godbole and Sarawagi, 2004; Zhang and Zhou, 2005).
However, as the decision for the presence of an attribute over a word is independent of

all the other attributes, the final set of attributes obtained for a word in §5.3.2 might not be
a valid paradigm.7 For example, a word cannot only exhibit the two attributes POS:Noun

and Tense:Past, since the presence of the tense attribute implies POS:Verb should also be
true. Further, we want to utilize the inherent correlations between attribute labels to obtain
better solutions. We thus present an alternative, simpler method to account for this problem.
To ensure that we obtain a valid attribute paradigm, we project the empirical attribute vector
obtained after propagation to the space of all valid paradigms.

We first collect all observed and thus valid attribute paradigms from the seed lexicon (P =

{aw|w ∈ L}). We replace the empirical attribute vector obtained in §5.3.2 by a valid attribute
paradigm vector which is nearest to it according to Euclidean distance. This projection step
is inspired from the decoding step in label-space transformation approaches to multilabel
classification (Hsu et al., 2009; Ferng and Lin, 2011; Zhang and Schneider, 2011). This is the
last step in Algorithm 1 (lines 10–17). We investigate for each language if paradigm projection
is helpful (§5.4.1).

7A paradigm is defined as a set of attributes.
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|L| |W| |E| |A| |P| Prop
(k) (k) (m) (k)

eu 3.4 130 13 83 811 118
bg 8.1 309 27 57 53 285
hr 6.9 253 26 51 862 251
cs 58.5 507 51 122 4,789 403
da 5.9 259 26 61 352 246
en 4.1 1,006 100 50 412 976
fi 14.4 372 30 100 2,025 251
el 3.9 358 26 40 409 236
hu 1.9 451 25 85 490 245
it 8.5 510 28 52 568 239
sv 4.8 305 26 41 265 268

Table 5.2: Graph statistics for different languages, showing the approximate number of labeled
seed nodes (|L|), labeled and unlabeled nodes (|W|), edges between words (|E|), the number
of unique attributes (|A|), attribute paradigms (|P|) and size of the constructed lexicon (Prop).
k: thousands, m: millions.

5.4 Intrinsic Evaluation

To ascertain how our graph-propagation framework predicts morphological attributes for
words, we provide an intrinsic evaluation where we compare predicted attributes to gold
lexicons that have been either read off from a treebank or annotated manually.

5.4.1 Dependency Treebank Lexicons

The universal dependency treebank (McDonald et al., 2013; De Marneffe et al., 2014; Agić
et al., 2015) contains dependency annotations for sentences and morpho-syntactic annotations
for words in context for a number of languages. A word can display different attributes
depending on its role in a sentence. In order to create morpho-syntactic lexicon for every lan-
guage, we take the union of all the attributes that the word realizes in the entire treebank. It is
possible that this lexicon might not contain all realizable attributes if a particular attribute or
paradigm is not seen in the treebank (we address this issue in §5.4.2). The utility of evaluating
against treebank derived lexicons is that it allows us to evaluate on a large set of languages.
In particular, in the universal dependency treebanks v1.1 (Agić et al., 2015), 11 diverse lan-
guages contain the morphology layer, including Romance, Germanic and Slavic languages
plus isolates like Basque and Greek.

We use the train/dev/test set of the treebank to create training (seed),8 development and
test lexicons for each language. We exclude words from the dev and test lexicon that have
been seen in seed lexicon. For every language, we create a graph with the features described

8We only include those words in the seed lexicon that occur at least twice in the training set of the treebank.
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Clus Suffix Prefix MorphTrans Proj
eu X X X
bg X X
hr X X X
cs X X X X X
da X X X
en X X X
fi X X
el X X X X
hu X X X
it X X X
sv X X X

Table 5.3: Features selected and the decision of paradigm projection (Proj) tuned on the de-
velopment lexicon for each language. Xdenotes a selected feature.

in §5.2 with words in the seed lexicon as labeled nodes. The words from development and
test set are included as unlabeled nodes for the propagation stage.9 Table 5.2 shows statistics
about the constructed graph for different languages.10

We perform feature selection and hyperparameter tuning by optimizing prediction on
words in the development lexicon and then report results on the test lexicon. Our feature
selection is done on the template level, i.e., if we decide to not use suffixes, the entire set of
suffixes are removed. Thus the ablation experiments are done for word clusters, suffix, prefix,
and morphological transformation feature templates. The decision whether paradigm projec-
tion (§5.3.3) is useful or not is also taken by tuning performance on the development lexicon.
Table 5.3 shows the features that were selected for each language. Now, for every word in
the test lexicon we obtain predicted lexical attributes from the graph. For a given attribute,
we count the number of words for which it was correctly predicted (true positive), wrongly
predicted (false positive) and not predicted (false negative). Aggregating these counts over
all attributes (A), we compute the micro-averaged F1 score and achieve 74.3% on an average
across 11 languages (cf. table 5.4). Note that this systematically underestimates performance
due to the effect of missing attributes/paradigms that were not observed in the treebank.

Propagated Lexicons. The last column in Table 5.2 shows the number of words in the prop-
agated lexicon, and the first column shows the number of words in the seed lexicon. The ratio
of the size of propagated and seed lexicon is different across languages, which presumably
depends on how densely connected each language’s graph is. For example, for English the

9Words from the news corpus used for word clustering are also used as unlabeled nodes.
10Note that the size of the constructed lexicon (cf. Table 5.2) is always less than or equal to the total number of

unlabeled nodes in the graph because some unlabeled nodes are not able to collect enough mass for acquiring an
attribute i.e, ∀a ∈ A : aw < 0 and thus they remain unlabeled (cf. §5.3.2).
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propagated lexicon is around 240 times larger than the seed lexicon, whereas for Czech, its
8 times larger. We can individually tune how densely connected graph we want for each
language depending on the seed size and feature sparsity, which we leave for future work.

Selected Edge Features. The features most frequently selected across all the languages are
the word cluster and the surface morphological transformation features. This essentially trans-
lates to having a graph that consists of small connected components of words having the same
lemma (discovered in an unsupervised manner) with semantic links connecting such compo-
nents using word cluster features. Suffix features are useful for highly inflected languages
like Czech and Greek, while the prefix feature is only useful for Czech. Overall, the selected
edge features for different languages correspond well to the morphological structure of these
languages (Dryer, 2013).

Corpus Baseline. We compare our results to a corpus-based method of obtaining morpho-
syntactic lexicons. We hypothesize that if we use a morphological tagger of reasonable quality
to tag the entire wikipedia corpus of a language and take the union of all the attributes
for a word type across all its occurrences in the corpus, then we can acquire all possible
attributes for a given word. Hence, producing a lexicon of reasonable quality. Moore (2015)
used this technique to obtain a high quality tag dictionary for POS-tagging. We thus train a
morphological tagger (detail in §5.5.1) on the training portion of the dependency treebank and
use it to tag the entire Wikipedia corpus. For every word, we add an attribute to the lexicon
if it has been seen at least k times for the word in the corpus, where k ∈ [2, 20]. This threshold
on the frequency of the word-attribute pair helps prevent noisy judgements. We tune k for
each language on the development set and report results on the test set in Table 5.4. We call
this method the Corpus baseline. It can be seen that for every language we outperform this
baseline, which on average has an F1 score of 67.1%.

5.4.2 Manually Curated Lexicons

We have now showed that its possible to automatically construct large lexicons from smaller
seed lexicons. However, the seed lexicons used in §5.4.1 have been artifically constructed from
aggregating attributes of word types over the treebank. Thus, it can be argued that these
constructed lexicons might not be complete i.e., the lexicon might not exhibit all possible
attributes for a given word. On the other hand, manually curated lexicons are unavailable for
many languages, inhibiting proper evaluation.

To test the utility of our approach on manually curated lexicons, we investigate publicly
available lexicons for Finnish (Pirinen, 2011), Czech (Hajič and Hladká, 1998a) and Hungarian
(Trón et al., 2006). We eliminate numbers and punctuation from all lexicons. For each of these
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words Corpus Propagation
eu 3409 54.0 57.5
bg 2453 66.4 73.6
hr 1054 69.7 71.6
cs 14532 79.1 80.8
da 1059 68.2 78.1
en 3142 57.2 72.0
fi 2481 58.2 68.2
el 1093 72.2 82.4
hu 1004 64.9 70.9
it 1244 78.8 81.7
sv 3134 69.8 80.7

avg. 3146 67.1 74.3

Table 5.4: Micro-averaged F1 score (%) for prediction of lexical attributes on the test set us-
ing our propagation algorithm (Propagation) and the corpus-based baseline (Corpus). Also,
shown are the no. of words in test set.

words F1
cs 115,218 87.5
fi 39,856 71.9
hu 135,386 79.7
avg. 96,820 79.7

Table 5.5: Micro-averaged F1 score (%) for prediction of lexical attributes on the test lexicon of
human-curated lexicons.

languages, we select 10000 words for training and the rest of the word types for evaluation. We
train models obtained in §5.4.1 for a given language using suffix, Brown and morphological
transformation features with paradigm projection. The only difference is the source of the
seed lexicon and test set. Results are reported in Table 5.5 averaged over 10 different randomly
selected seed set for every language. For each language we obtain more than 70% F1 score
and on an average obtain 79.7%. The F1 score on human curated lexicons is higher for each
language than the treebank constructed lexicons, in some cases as high as 9% absolute. This
suggests that the average 74.3% F1 score across all 11 languages is likely underestimated.

5.5 Extrinsic Evaluation

We now show that the automatically generated lexicons provide informative features that are
useful in two downstream NLP tasks: morphological tagging (§5.5.1) and syntactic depen-
dency parsing (§5.5.2).

55



word exchange cluster∗

lowercase(word) capitalization
{1,2,3}-g suffix∗ digit
{1,2,3}-g prefix∗ punctuation

Table 5.6: Features used to train the morphological tagger on the universal dependency tree-
bank. ∗ on for word offsets {-2, -1, 0, 1, 2}. Conjunctions of the above are also included.

None Seed Propagation
eu 84.1 84.4 85.2
bg 94.2 94.6 95.9
hr 92.5 93.6 93.2
cs 96.8 97.1 97.1
da 96.4 97.1 97.3
en 94.4 94.7 94.8
fi 92.8 93.6 94.0
el 93.4 94.6 94.2
hu 91.7 92.3 93.5
it 96.8 97.1 97.1
sv 95.4 96.5 96.5
avg. 93.5 94.2 94.5

Table 5.7: Macro-averaged F1 score (%) for morphological tagging: without using any lexicon
(None), with seed lexicon (Seed), with propagated lexicon (Propagation).

5.5.1 Morphological Tagging

Morphological tagging is the task of assigning a morphological reading to a token in context.
The morphological reading consists of features such as part of speech, case, gender, person,
tense etc. (Oflazer and Kuruöz, 1994; Hajič and Hladká, 1998b). The model we use is a stan-
dard atomic sequence classifier that classifies the morphological bundle for each word inde-
pendent of the others (with the exception of features derived from these words). Specifically,
we use a linear SVM model classifier with hand tuned features. This is similar to commonly
used analyzers like SVMTagger (Màrquez and Giménez, 2004) and MateTagger (Bohnet and
Nivre, 2012).

Our taggers are trained in a language independent manner (Hajič, 2000; Smith et al., 2005;
Müller et al., 2013). The list of features used in training the tagger are listed in Table 5.6.
In addition to the standard features, we use the morpho-syntactic attributes present in the
lexicon for every word as features in the tagger. As shown in Müller and Schuetze (2015),
this is typically the most important feature for morphological tagging, even more useful than
clusters or word embeddings. While predicting the contextual morphological tags for a given
word, the morphological attributes present in the lexicon for the current word, the previous
word and the next word are used as features.
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None Seed Propagation
eu 60.5 62.3 62.9
bg 78.3 78.8 79.3
hr 72.8 74.7 74.7
cs 78.3 78.4 78.4
da 67.5 69.4 70.1
en 74.4 74.1 74.4
fi 66.1 67.4 67.9
el 75.0 75.6 75.8
hu 67.6 69.0 71.1
it 82.4 82.8 83.1
sv 69.7 70.1 70.1
avg. 72.0 73.0 73.5

Table 5.8: Labeled accuracy score (LAS, %) for dependency parsing: without using any lexicon
(None), with seed (Seed), with propagated lexicon (Propagation). Bold indicates best result
for each language.

We use the same 11 languages from the universal dependency treebanks (Agić et al., 2015)
that contain morphological tags to train and evaluate the morphological taggers. We use
the pre-specified train/dev/test splits that come with the data. Table 5.7 shows the macro-
averaged F1 score over all attributes for each language on the test lexicon. The three columns
show the F1 score of the tagger when no lexicon is used; when the seed lexicon derived from
the training data is used; and when label propagation is applied.

Overall, using lexicons provides a significant improvement in accuracy, even when just
using the seed lexicon. For 9 out of 11 languages, the highest accuracy is obtained using
the lexicon derived from graph propagation. In some cases the gain is quite substantial, e.g.,
94.6% → 95.9% for Bulgarian. Overall there is 1.0% and 0.3% absolute improvement over the
baseline and seed respectively, which corresponds roughly to a 15% and 5% relative reduction
in error. It is not surprising that the seed lexicon performs on par with the derived lexicon
for some languages, as it is derived from the training corpus, which likely contains the most
frequent words of the language.

5.5.2 Dependency Parsing

We train dependency parsers for the same 11 universal dependency treebanks that contain
the morphological layer (Agić et al., 2015). We again use the supplied train/dev/test split of
the dependency treebank to develop the models. Our parsing model is the transition-based
parsing system of Zhang and Nivre (2011) with identical features and a beam of size 8.

We augment the features of Zhang and Nivre (2011) in two ways: using the context-
independent morphological attributes present in the different lexicons; and using the corre-
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Figure 5.3: Micro-average F1 score for predicting the morpho-syntactic attributes on the test
lexicon while using varying seed sizes for cs, hu and fi.

sponding morphological taggers from §5.5.1 to generate context-dependent attributes. For
each of the above two kinds of features, we fire the attributes for the word on top of the stack
and the two words on at the front of the buffer. Additionally we take the cross product of
these features between the word on the top of the stack and at the front of the buffer.

Table 5.8 shows the labeled accuracy score (LAS) for all languages. Overall, the generated
lexicon gives an improvement of absolute 1.5% point over the baseline (5.3% relative reduction
in error) and 0.5% over the seed lexicon on an average across 11 languages. Critically this
improvement holds for 10/11 languages over the baseline and 8/11 languages over the system
that uses seed lexicon only.

5.6 Further Analysis

In this section we further investigate our model and results in detail.

Size of seed lexicon. We first test how the size of the seed lexicon affects performance of
attribute prediction on the test set (intrinsic evaluation for prediction of morpho-syntactic
attributes). We use the manually constructed lexicons described in §5.4.2 for experiments. For
each language, instead of using the full seed lexicon of 10000 words, we construct subsets of
this lexicon by taking 1000 and 5000 randomly sampled words. We then train models obtained
in §5.4.1 on these lexicons and plot the performance on the test set in Figure 5.3. On average
across three languages, we observe that the absolute performance improvement from 1000 to
5000 seed words is ≈10% whereas it reduces to ≈2% from 5000 to 10000 words.
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VForm:Ger Num:Plur

Clus:105 (ex.: playing, running) + Clus:19 (ex.: movies, tickets) +
Clus:77 (ex.: eating, feeding) + Clus:97 (ex.: guardsmen, women) +
suffix:ing:{null} - suffix:ies:y -
suffix:ping:{null} - suffix:gs:g -
suffix:ing:er - suffix:ons:on -

Table 5.9: Highest (upper half) and lowest (lower half) weighted features (with their sign) for
predicting a given attribute of English words.

Word Attributes

en
study (seed) POS:Verb, VForm:Fin, Mood:Ind, Tense:Pres, Num:Sing, POS:Noun
studied POS:Verb, VForm:Fin, Mood:Ind, Tense:Past, VForm:Part
taught POS:Verb, VForm:Fin, Mood:Ind, Tense:Past, VForm:Part, Voice:Pass

it
tavola (seed) POS:Noun, Gender:Fem, Num:Sing
tavoli POS:Noun, Gender:Masc, Num:Plur
divano POS:Noun, Gender:Masc, Num:Sing

Table 5.10: Attributes induced for words which are semantically or syntactically related to a
word in the seed lexicon for English and Italian.

Feature analysis. Table 5.9 shows the highest and the lowest weighted features for predict-
ing a given attribute of English words. The highest weighted features for both VForm:Ger

and Num:Plur are word clusters, indicating that word clusters exhibit strong syntactic and
semantic coherence. More interestingly, it can be seen that for predicting VForm:Ger i.e.,
continuous verb forms, the lowest weighted features are those morphological transformations
that substitute “ing” with something else. Thus, if there exists an edge between the words
studying and study, containing the feature suffix:ing:{null}, the model would correctly predict
that studying is VForm:Ger as study is not so and the negative feature weight can flip the label
values. The same observation holds true for Num:Plur.

Prediction examples. Table 5.10 shows examples of predictions made by our model for En-
glish and Italian. For each language, we first select a random word from the seed lexicon,
then we pick one syntactic and one semantically related word to the selected word from the
set of unlabeled words. For e.g., in Italian tavola means table, whereas tavoli is the plural form
and divano means sofa. We correctly identify attributes for these words.

5.7 Conclusion

A word is composed of sub-word units called morphemes which compose together to assign
meaning to the word. These morphemes thus provide informative signals about the word’s
meaning. In this chapter, we have shown that morphology of the word provides evidence
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about its meaning and such evidence is useful in addition to the distributional information
of the word. We have presented a graph-based semi-supervised method to construct large
annotated morpho-syntactic lexicons from small seed lexicons. In addition to distributional
evidence in the form of word clusters, we use the internal morphological structure of a word
to predict its morpho-syntactic attributes. Our method is language independent, and can be
used for expanding both human constructed and dependency treebank lexicons. We have
constructed lexicons for 11 different languages, and showed that the lexicons thus constructed
help improve performance in morphological tagging and dependency parsing, when used as
features.
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Chapter 6

Translational Context

Apart from the monolingual context of a word, the context of a word’s translation across
different languages has been shown to provide evidence of its meaning (Resnik and Yarowsky,
1999; Diab, 2003). The translational context of a word can be obtained from a parallel corpus.
In a parallel corpus, every sentence in one language has a corresponding translated sentence in
another language. Bannard and Callison-Burch (2005) show that if different words or phrases
often translate into a single word or phrase type in a different language, this is good evidence
that they are synonymous. For example, Figure 6.1 shows an English sentence which has two
possible translations in Arabic. Although, the two verbs ylEb and ylEbwn1 mean the same in
English, they have different surface forms and different positions with respect to other words
in the sentence. The cross-lingual pivoting here helps us identify that these two words are
synonymous and should belong to the same word cluster. Firth might paraphrase this as “You
shall know a word by how it translates”.

Figure 6.1: A 2 sentence Arabic–English parallel corpus with word alignments.

How can we exploit information like this when constructing word meaning representa-
tions? We present models to incorporate this translational information into word meaning
representations that are constructed primarily using monolingual distributional information.

1These words are transcribed in Buckwalter encoding http://languagelog.ldc.upenn.edu/myl/ldc/morph/
buckwalter.html
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Specifically, we explore incorporating translational information into distributional word clus-
ters (§6.1), and word vectors (§6.2).2

6.1 Word Clusters

A word cluster is a group of words that ideally captures syntactic, semantic, and distributional
regularities among the words belonging to the group. Word clustering is widely used to
reduce the number of parameters in statistical models which leads to improved generalization
(Brown et al., 1992; Kneser and Ney, 1993a; Clark, 2003; Koo et al., 2008; Turian et al., 2010), and
multilingual clustering has been proposed as a means to improve modeling of translational
correspondences and to facilitate projection of linguistic resource across languages (Och, 1999;
Täckström et al., 2012b). In this chapter, we show that generally more informative clusters can
be learned when evidence from multiple languages is considered while creating the word
clusters.

We propose a novel bilingual word clustering objective in which the first term deals with
each language independently and ensures that the data is well-explained by the clustering in
a sequence model. The second term ensures that the cluster alignments induced by a word
alignment have high mutual information across languages. Since the objective consists of
terms representing the entropy of monolingual data (for each language) and parallel bilingual
data, it is particularly attractive for the usual situation in which there is much more monolin-
gual data available than parallel data. Because of its similarity to the variation of information
metric (Meilǎ, 2003), we call this bilingual term in the objective the aligned variation of in-
formation.

6.1.1 Monolingual Objective

A word clustering C is a partition of a vocabulary Σ = {x1, x2, . . . , x|Σ|} into K disjoint subsets,
C1, C2, . . . , CK. That is, C = {C1, C2, . . . , CK}; Ci ∩ Cj = ∅ for all i 6= j and

⋃K
k=1 Ck = Σ. We use

the average surprisal in a probabilistic sequence model to define the monolingual clustering
objective. Let ci denote the word class of word wi. Our objective assumes that the probability
of a word sequence w = 〈w1, w2, . . . , wM〉 is

p(w) =
M

∏
i=1

p(ci | ci−1)× p(wi | ci),

where c0 is a special start symbol. The term p(ci | ci−1) is the probability of class ci following
class ci−1, and p(wi | ci) is the probability of class ci emitting word wi. Using the MLE
estimates after taking the negative logarithm, this term reduces to the following as shown in

2Previously published in Faruqui and Dyer (2013) and Faruqui and Dyer (2014b).
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(Brown et al., 1992):

H(C; w) = 2
K

∑
k=1

#(Ck)

M
log

#(Ck)

M
−∑

i
∑
j 6=i

#(Ci, Cj)

M
log

#(Ci, Cj)

M

where #(Ck) is the count of Ck in the corpus w under the clustering C, #(Ci, Cj) is the count
of the number of times that cluster Ci precedes Cj and M is the size of the corpus. Using the
monolingual objective to cluster, we solve the following search problem:

Ĉ = arg min
C

H(C; w). (6.1)

This is a computationally hard combinatorial optimization problem, and finding the clustering
that can maximize the average mutual information is impractical. However, starting from
an initial estimate, a greedy hill-climbing word exchange algorithm can often produce good
results (Brown et al., 1992; Martin et al., 1995).

6.1.2 Bilingual Objective

Now let us suppose we have a second language with vocabulary Ω = {y1, y2, . . . , y|Ω|}, which
is clustered into K disjoint subsets D = {D1, D2, . . . , DK}, and a corpus of text in the second
language, v = 〈v1, v2, . . . , vN〉. Obviously we can cluster both languages using the monolin-
gual objective above:

Ĉ, D̂ = arg min
C,D

H(C; w) + H(D; v). (6.2)

This joint minimization for the clusterings for both languages clearly has no benefit since the
two terms of the objective are independent. We must alter the object by further assuming that
we have a priori beliefs that some of the words in w and v have the same meaning.

To encode this belief, we introduce the notion of a weighted vocabulary alignment A,
which is a function on pairs of words in vocabularies Σ and Ω to a value greater than or equal
to 0, i.e., A : Σ × Ω 7→ R≥0. For concreteness, A(x, y) will be the number of times that x
is aligned to y in a word aligned parallel corpus. By abuse of notation, we write marginal
weights A(x) = ∑y∈Ω A(x, y) and A(y) = ∑x∈Σ A(x, y). We also define the set marginals
A(C, D) = ∑x∈C ∑y∈D A(x, y). Using this weighted vocabulary alignment, we state an ob-
jective that encourages clusterings to have high average mutual information when alignment
links are followed; that is, on average how much information does knowing the cluster of a
word x ∈ Σ impart about the clustering of y ∈ Ω, and vice-versa? We call this quantity the
aligned variation of information (AVI).

AVI(C,D;A) = EA(x,y)
[
− log p(cx | dy)− log p(dy | cx)

]
(6.3)
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C DC

Figure 6.2: Factor graphs of the monolingual (left) & proposed bilingual clustering problem
(right).

Writing out the expectation and gathering terms, we obtain

AVI(C,D;A) = − ∑
x∈Σ

∑
y∈Ω

A(x, y)
A(·, ·) ×

[
2 log

A(C, D)

A(·, ·) − log p(C)− log p(D)

]
,

where it is assumed that 0 log x = 0. Our bilingual clustering objective can therefore be stated
as the following search problem over a linear combination of the monolingual and bilingual
objectives:

arg min
C,D

monolingual︷ ︸︸ ︷
H(C; w) + H(D; v) +

β×bilingual︷ ︸︸ ︷
βAVI(C,D) . (6.4)

Figure 6.2 shows the factor graph representation of our clustering models.

Aligned Variation of Information

Intuitively, we can imagine sampling a random alignment from the distribution obtained by
normalizing A(·, ·). AVI gives us a measure of how much information do we obtain, on
average, from knowing the cluster in one language about the clustering of a linked element
chosen at random proportional to A(x, ·) (or conditioned the other way around). In the
following sections, we denote AVI(C,D;A) by AVI(C,D). To further understand AVI, we
remark that AVI reduces to the VI metric when the alignment maps words to themselves in
the same language. As a proper metric, VI has a number of attractive properties, and these
can be generalized to AVI (without restriction on the alignment map), namely:

• Non-negativity: AVI(C, D) ≥ 0

• Symmetry: AVI(C, D) = AVI(D, C)

• Triangle inequality: AVI(C, D) + AVI(D, E) ≥ AVI(C, E)

• Identity of indiscernibles: AVI(C, D) = 0 iff C ≡ D.3
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H(D;v) = 4H(C;w) = 4.56H(C;w) = 4H(D;v) = 3.88

H(C;w) + H(D;v)= 8.56H(C;w) + H(D;v)= 7.88

AVI(C,D)= 0AVI(C,D)= 1.0

Figure 6.3: A 3-class clustering that maximizes the monolingual objective (β = 0; center);
and a 3-class clustering that maximizes the joint monolingual and bilingual objective (any
β > 0.68; right).

Example

Figure 6.3 provides an example illustrating the difference between the bilingual vs. mono-
lingual clustering objectives. We compare two different clusterings of a two-sentence Arabic-
English parallel corpus (the English half of the corpus contains the same sentence, twice,
while the Arabic half has two variants with the same meaning). While English has a rela-
tively rigid SVO word order, Arabic can alternate between the traditional VSO order and an
more modern SVO order. Since our monolingual clustering objective relies exclusively on
the distribution of clusters before and after each token, flexible word order alternations like
this can cause unintuitive results. To further complicate matters, verbs can inflect differently
depending on whether their subject precedes or follows them (Haywood and Nahmad, 1999),
so a monolingual model, which knows nothing about morphology and may only rely on
distributional clues, has little chance of performing well without help. This is indeed what
we observe in the monolingual objective optimal solution (center), in which AwlAd (boys) and
yElbwn (play+pres + 3pl) are grouped into a single class, while yElb (play+pres + 3sg) is in
its own class. However, the AVI term (which is of course not included) has a value of 1.0,
reflecting the relatively disordered clustering relative to the given alignment. On the right, we
see the optimal solution that includes the AVI term in the clustering objective. This has an
AVI of 0, indicating that knowing the clustering of any word is completely informative about
the words it is aligned to. By including this term, a slightly worse monolingual solution is

3C ≡ D iff ∀i|{D(y)|∀(x, y) ∈ A,C(x) = i}| = 1
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chosen, but the clustering corresponds to the reasonable intuition that words with the same
meaning (i.e., the two variants of to play) should be clustered together.

Inference

Finding the optimal clustering under both the monolingual and bilingual objectives is a com-
putationally hard combinatorial optimization problem (Och, 1995). We use a greedy hill-
climbing word exchange algorithm (Martin et al., 1995) to find a minimum value for our
objective. We terminate the optimization procedure when the number of words exchanged at
the end of one complete iteration through both the languages is less than 0.1% of the sum of
vocabulary of the two languages and at least five complete iterations have been completed. In
practice, the number of exchanged words drops of exponentially, so this threshold is typically
reached in not many iterations. For every language the word clusters are initialized in a round
robin order according to the token frequency.

6.1.3 Evaluation

Evaluation of clustering is not a trivial problem. One branch of work seeks to recast the
problem as the of part-of-speech (POS) induction and attempts to match linguistic intuitions.
However, hard clusters are particularly useful for downstream tasks (Turian et al., 2010). We
therefore chose to focus our evaluation on the a downstream task. For our evaluation, we
use our word clusters as an input to a named entity recognizer which uses these clusters as
a source of features. Our evaluation task is the German corpus with NER annotation that
was created for the shared task at CoNLL-2003.4 The training set contains approximately
220,000 tokens and the development set and test set contains 55,000 tokens each. We use
Stanford’s Named Entity Recognition system5 which uses a linear-chain conditional random
field to predict the most likely sequence of NE labels (Finkel and Manning, 2009).

Corpora for Clustering. We used parallel corpora for {Arabic, English, French, Korean &
Turkish}-German pairs from WIT-3 corpus (Cettolo et al., 2012),6 which is a collection of
translated transcriptions of TED talks. Each language pair contained around 1.5 million Ger-
man words. The corpus was word aligned in two directions using an unsupervised word
aligner (Dyer et al., 2013), then the intersected alignment points were taken.

Monolingual Clustering. For every language pair, we train German word clusters on the
monolingual German data from the parallel data. Note that the parallel corpora are of differ-
ent sizes and hence the monolingual German data from every parallel corpus is different. We

4http://www.cnts.ua.ac.be/conll2003/ner/
5http://nlp.stanford.edu/ner/index.shtml
6https://wit3.fbk.eu/mt.php?release=2012-03
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Dev Test

Language Pair — β = 0 β = 0.1 β = 0.1 β = 0 β = 0.1
(only bi) (only mono) (unrefined) (refined) (only mono) (refined)

No clusters 68.27 72.32
English–German 68.95 70.04 70.33 70.64† 72.30 72.98†

French–German 69.16 69.74 69.69 69.89 72.66 72.83
Arabic–German 69.01 69.65 69.40 69.67 72.90 72.37
Turkish–German 69.29 69.46 69.64 70.05† 72.41 72.54
Korean–German 68.95 69.70 69.78 69.95 72.71 72.54
Average 69.07 69.71 69.76 70.04† 72.59 72.65

Table 6.1: NER performance using different word clustering models. Bold indicates an im-
provement over the monolingual (β = 0) baseline; † indicates a significant improvement (Mc-
Nemar’s test, p < 0.01).

treat the F1 score obtained using monolingual word clusters (β = 0) as the baseline. Table 6.1
shows the F1 score of NER when trained on these monolingual German word clusters.7

Bilingual Clustering. While we have formulated a joint objective that enables using both
monolingual and bilingual evidence, it is possible to create word clusters using the bilingual
signal only (AVI(C,D)) by removing the first term in Eq.6.4. Table 6.1 shows the performance
of NER when the word clusters are obtained using only the bilingual information for different
language pairs. As can be seen, these clusters are helpful for all the language pairs. For
Turkish the F1 score improves by 1.0 point over when there are no distributional clusters
which clearly shows that the word alignment information improves the clustering quality. We
now need to supplement the bilingual information with monolingual information to see if
the improvement sustains. The parameter β controls the strength of the bilingual objective
and initial experiments showed that the value of β = 0.1 is fairly robust across other language
pairs and hence we fix it to that for all the experiments. We run our bilingual clustering model
across all language pairs and note the F1 scores. Table 6.1 (unrefined) shows that except for
Arabic–German & French–German, all other language pairs deliver a better F1 score than only
using monolingual German data. In case of Arabic–German there is a drop in score by 0.25
points. Although we have observed improvement in F1 score over the monolingual case, the
gains do not reach significance according to McNemar’s test (Dietterich, 1998).

Thus we propose to further refine the quality of word alignment links as follows: Let x
be a word in language Σ and y be a word in language Ω and let there exists an alignment
link between x and y. Recall that A(x, y) is the count of the alignment links between x and
y observed in the parallel data, and A(x) and A(y) are the respective marginal counts. Then
we define an edge association weight e(x, y) = 2×A(x,y)

A(x)+A(y) This quantity is an association of

7Faruqui and Padó (2010) show that for the size of our generalization data in German-NER, K = 100 should
give us the optimum value.
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the strength of the relationship between x and y, and we use it to remove all alignment links
whose e(x, y) is below a given threshold before running the bilingual clustering model. We
vary e from 0.1 to 0.7 and observe the new F1 scores on the development data. Table 6.1
(refined) shows the results obtained by our refined model. The values shown in bold are the
highest improvements over the monolingual model.

Evaluation on Test Set. We now verify our results on the test set (Table 6.1). We take the
best bilingual word clustering model obtained for every language pair on the dev set (e = 0.1
for English, French. e = 0.5 for Arabic, Turkish. e = 0.7 for Korean) and train NER classifiers
using these. English again has a statistically significant improvement over the baseline. French
and Turkish show the next best improvements. Overall, these results show how cross-lingual
word alignments can help improve the quality of distributional word clusters as evaluated on
an extrinsic task.

We presented a novel information theoretic model for bilingual word clustering which
seeks a clustering with high average mutual information between clusters of adjacent words,
and also high mutual information across observed word alignment links. We have shown
that improvement in clustering can be obtained across a range of language pairs, evaluated
in terms of their value as features in an extrinsic NER task. Our model can be extended for
clustering any number of given languages together in a joint framework, and incorporate both
monolingual and parallel data.

6.2 Word Vectors

In the previous section we saw how cross-lingual word alignments, or translational context of
words can be useful in obtaining better quality distributional word clusters. In this section,
we go one step further and argue for incorporating translational context when constructing
word vector representations. Simply put: knowing how words translate is a valuable source
of lexico-semantic information and should lead to better vector-space word representations.
How can we exploit information like this when constructing vector-space models? We pro-
pose a technique that first constructs independent vector-space models in two languages and
then projects them onto a common vector space such that translation pairs (as determined by
automatic word alignments) are maximally correlated.

6.2.1 Bilingual Correlation with CCA

To gain information from the translation of a given word in other languages the most basic
thing to do would be to just append the given word representation with the word representa-
tions of its translation in the other language. This has three drawbacks: first, it increases the
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Figure 6.4: Cross-lingual word vector projection using canonical coorelation analysis (CCA).

number of dimensions in the vector; second, it can pull irrelevant information from the other
language that doesn’t generalize across languages and finally the given word might be out of
vocabulary of the parallel corpus or dictionary. To counter these problems we use canonical
correlation analysis, which is a way of measuring the linear relationship between two multidi-
mensional variables. CCA finds two projection vectors, one for each variable, that are optimal
with respect to correlations in the projected space. The dimensionality of these new projected
vectors is equal to or less than the smaller dimensionality of the two variables.

Let Σ ∈ RN1×D1 and Ω ∈ RN2×D2 be vector space embeddings of two different vocabularies
where rows represent words. Since the two vocabularies are of different sizes (N1 and N2) and
there might not exist translation for every word of Σ in Ω, let Σ

′ ⊆ Σ where every word in
Σ
′

is translated to one other word in Ω
′ ⊆ Ω and Σ ∈ RD1×N and Ω ∈ RD2×N . Let x and

y be two corresponding vectors from Σ
′

and Ω
′
, and V and W be two projection matrices.

Then, the projected vectors are: x
′
= Vx & y

′
= Vy. and the correlation between the projected

vectors can be written as: ρ(x
′
, y
′
) = E[x

′
y
′
]√

E[x′2]E[y′2]
. CCA maximizes ρ for the given set of vectors

Σ
′

and Ω
′

and outputs two projection matrices V and W:

V, W = CCA(x, y) = arg max
V,W

ρ(Vx, Wy)

Using these two projection matrices we can project the entire vocabulary of the two languages
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Dim Lang WS-353 MEN SimLex SEM-REL SYN-REL Senti

SVD 80 Mono 34.8 50.4 18.6 13.5 24.4 77.2
64 Multi 55.2 67.1 29.5 23.4 33.2 77.4

RNN 80 Mono 23.6 23.8 26.2 4.7 18.2 68.9
64 Multi 27.9 27.4 21.6 4.1 12.2 68.2

SG 80 Mono 63.9 64.6 31.3 47.8 47.8 75.4
64 Multi 63.1 67.0 32.5 46.5 44.2 76.6

Table 6.2: Spearman’s correlation (left 3 columns) and accuracy (right 3 columns) on differ-
ent tasks. Bold indicates best result across all vector types. Mono: monolingual and Multi:
multilingual.

Σ and Ω. Summarizing:
V, W = CCA(Σ

′
, Ω

′
)

Σ∗ = VΣ Ω∗ = WΩ (6.5)

where, V ∈ RD×D1 , W ∈ RD×D2 contain the projection vectors and D = min{rank(V), rank(W)}.
Thus, the resulting vectors cannot be longer than the original vectors. Since V and W can be
used to project the whole vocabulary, CCA also solves the problem of not having translations
of a particular word in the dictionary. The schema of performing CCA on the monolingual
word representations of two languages is shown in Figure 6.4.

Further Dimensionality Reduction: Since CCA gives us correlations and corresponding pro-
jection vectors across D dimensions which can be large, we perform experiments by taking
projections of the original word vectors across only the top K correlated dimensions. This is
trivial to implement as the projection vectors V, W in Equation 6.2.1 are already sorted in
descending order of correlation. Therefore in,

Σ∗K = VKΣ Ω∗K = WKΩ (6.6)

Σ∗K and Ω∗K are now word vector projections along the top K correlated dimensions, where,
Vk and Wk are the column truncated matrices.

6.2.2 Evaluation

We evaluate the quality of our word vector representations on different word similarity, word
analogy and sentiment analysis. We used three different word vector models: SVD, RNN and
Skip-Gram (SG) described in appendix A.
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Vector Training Data. For English, German and Spanish we used the WMT-20118 monolin-
gual news corpora and for French we combined the WMT-2011 and 20129 monolingual news
corpora so that we have around 300 million tokens for each language to train the word vectors.

For CCA, a one-to-one correspondence between the two sets of vectors is required. Obvi-
ously, the vocabulary of two languages are of different sizes and hence to obtain one-to-one
mapping, for every English word we choose a word from the other language to which it has
been aligned the maximum number of times10 in a parallel corpus. We got these word align-
ment counts using fast-align (Dyer et al., 2010) from the parallel news commentary corpora
(WMT 2006-10) combined with the Europarl corpus for English–{German, French, Spanish}.

Evaluation Methodology. We construct word vectors of length 80 for English, German,
French and Spanish. We project the English word vectors using CCA by pairing them with
German, French and Spanish vectors. For every language pair we take the top k correlated
dimensions (cf. equation 6.6), where k ∈ {10%, 20%, . . . , 100%} and tune the performance on
WS-353 task (cf. chapter 3). We then select the k that gives us the best average performance
across language pairs, which is k = 80%, and evaluate the corresponding vectors on all other
benchmarks. This prevents us from over-fitting k for every individual task.

Results. We compare the best results obtained by using different types of monolingual word
representations across all language pairs. We train word vectors of length 80 because it was
computationally intractable to train the neural embeddings (RNN) for higher dimensions.
For multilingual vectors, we obtain k = 80%. Table 6.2 shows the correlation ratio and the
accuracies for the respective evaluation tasks. For the SVD vectors the performance improves
upon inclusion of multilingual context for all tasks, and the vectors give the best performance
on MEN and Senti tasks. For both RNN and SG vectors we see a drop in performance on
the word analogy tasks. Although both SVD and SG vectors improve in performance on
the sentiment analysis task, RNN vectors’ performance goes down, suggesting that semantic
projection in the same space is probably not appropriate for syntactic RNN vectors. Overall,
including multilingual information helps improve performance of vector space models on
different tasks, even more so when the tasks are semantic in nature. Note that we do not
evaluate word vectors using Qvec (§3.3) as the resultant bilingual word vectors are no longer
the same dimensionality as the monolingual word vectors, and in the current version of Qvec,
vectors with only the same dimensionality can be compared.

8http://www.statmt.org/wmt11/
9http://www.statmt.org/wmt12/

10We also tried weighted average of vectors across all aligned words and did not observe any significant differ-
ence in results.
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Figure 6.5: Monolingual (top) and multilingual (bottom; marked with apostrophe) word pro-
jections of the antonyms (shown in red) and synonyms of “beautiful”.

6.2.3 Analysis

To understand how multilingual evidence leads to better results in semantic evaluation tasks,
we plot the word representations of several synonyms and antonyms of the word “beautiful”
by projecting both the original and improved vectors onto R2 using the t-SNE tool (van der
Maaten and Hinton, 2008). The untransformed LSA vectors are in the upper part of Fig. 6.5,
and the CCA-projected vectors are in the lower part. By comparing the two regions, we see
that in the untransformed representations, the antonyms are in two clusters separated by the
synonyms, whereas in the transformed representation, both the antonyms and synonyms are
in their own cluster.

In order to demonstrate that the gains in performance by using multilingual correlation
sustains for different number of dimensions, we compared the performance of the mono-
lingual and (German-English) multilingual vectors. It can be see in figure 6.6 that the per-
formance improvement for multilingual vectors remains almost the same for different vector
lengths strengthening the reliability of our approach.

To further understand why multilingual context is highly effective for SVD vectors and
to a large extent for RNN vectors as well, we plot (Figure 6.7) the correlation ratio obtained
by varying the length of word representations by using equation 6.6 for the three different
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Figure 6.6: Performance of monolingual and multilingual vectors on WS-353 for different
vector lengths.

vector types on WS-353 word similarity task. SVD vectors improve performance upon the
increase of the number of dimensions and tend to saturate towards the end. For all the
three language pairs the SVD vectors show uniform pattern of performance which gives us
the liberty to use any language pair at hand. This is not true for the RNN vectors whose
curves are significantly different for every language pair. SG vectors show a uniform pattern
across different language pairs and the performance with multilingual context converges to
the monolingual performance when the vector length becomes equal to the monolingual case
(k = 80). The fact that both SG and SVD vectors have similar behavior across language pairs
can be treated as evidence that semantics or information at a conceptual level (since both of
them basically model word cooccurrence counts) transfers well across languages (Dyvik, 2004)
although syntax has been projected across languages as well (Hwa et al., 2005; Yarowsky and
Ngai, 2001). The pattern of results in the case of RNN vectors are indicative of the fact that
these vectors encode syntactic information which might not generalize well as compared to
semantic information.

6.3 Conclusion

We have presented two novel models to incorporate translational context information in word
cluster and word vectors. The bilingual word clustering model is an information theoretic
model which seeks a clustering with high average mutual information between clusters of
adjacent words, and also high mutual information across observed word alignment links. The
bilingual word vector model uses canonical correlation analysis to project word vectors from
two different languages into a shared space where they are maximally correlated. We have
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Figure 6.7: Performance as a function of vector length on WS-353. The monolingual vectors
always have a fixed length of 80, they are just shown in the plots for comparison.

shown that word meaning representations can be improved using translation context of a
word across languages, thus extending the distributional hypothesis. Firth might paraphrase
this as “You shall know a word by how it translates”.
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Chapter 7

Conclusion

7.1 Summary of Contributions

The distributional hypothesis states that the meaning of words is evidenced by the words it
co-occurs with in natural language text. Current methods of obtaining word meaning repre-
sentations like latent semantic analysis, Brown clustering etc. use information present in the
distributional context of a word to obtain word representations in the form of word clusters
or word vectors. Although distributional context is an important source of information for
understanding word meaning, in this thesis, I show that other sources like word lexicons,
provide complementary information about word meaning. I presented methods that can con-
struct and improve models of word meaning representation by including information beyond
the distributional context of the word. Contributions of this work include the following:

• I presented a method for intrinsic evaluation of the quality of word vector representa-
tions (chapter 3), which computes how well the dimensions of distributional word vec-
tors quantify the linguistic content of words. An intrinsic evaluation method for word
vectors will help in faster prototyping and comparison of different models of word vec-
tor representation.

• I showed that information contained in linguistic word lexicons can be used to construct
word vector representations which are competitive to their distributional counterparts.
Then, I present a model that can use such information extracted from semantic lexicons
to improve the quality of distributional word vectors (chapter 4).

• I showed that the morphology of a word provides evidence about its meaning and
present a model (chapter 5) for generating large morpho-syntactic word lexicons from
small manually constructed seed lexicons using information extracted from the distri-
butional context (in the form of word clusters), and the morphological structure of the
word.
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• I presented models (chapter 6) that can capture a word’s context across languages using
automatically extracted word alignments, to improve the quality of word cluster and
word vector representations trained using monolingual distributional context.

7.2 Future Directions

The work presented in this thesis outlines three axes along which word representations are
augmented. There are several directions that deserve further pursuit.

7.2.1 Richer knowledge

In chapter 3, we are currently using only supersenses of words as features representative of the
linguistic content of words in Qvec. Supersenses only provide semantic information about the
word. The linguistic matrix can be expanded to include various other sources of information
like syntactic treebanks (ex. the Penn Treebank), FrameNet, emotion and connotation lexicons
etc. which we used to construct the non-distributional word vectors (§4.1). As the size of
the linguistic matrix increases, the runtime of Qvec will increase, and an interesting research
problem is to find the optimal set of linguistic features that should be used in evaluation.

In chapter 4, we use retrofitting to make vector representation of words which have syn-
onyms meanings lie closer to each other in the vector space. Retrofitting was only used for
words related by synonymy, hyponymy, and hypernymy relation, where all of these relations
were treated similarly by the model. Since these relations convey different information they
should be treated differently. This can be done by tuning the edge weights for each relation
for a given particular task. Retrofitting can also be modified to be used with words with
antonymous meaning. In this direction, Mrkšić et al. (2016) have presented a method called
counter-fitting to include words with antonymous meaning in the graph.

In chapter 5, we construct a graph of words, over which we propagate morpho-syntactic
information to construct large morpho-syntactic lexicons from seed lexicons. The edges in the
graph are labeled with features that are shared between the words. We use easily obtainable
features like word clusters, {2, 3}-gram character prefix and suffix and morphological trans-
formation between words. Instead of using raw {2, 3}-gram character suffixes and prefixes,
we can use the correct suffix and prefix of the word by using a morphological segmentation
tool, like Morfessor (Creutz and Lagus, 2005). We can also explore using the sum, difference,
elementwise product, inner product or dot product of the word vectors of the two words
connected by an edge as set of features shared between the words.
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7.2.2 Richer representation models

Many words in the language have more than one sense of meaning, generally called word
senses. For example, the word bank can refer to both a financial institution or the land along-
side a river or lake, depending on the context it is used in. We have exclusively focused on
word representations that can capture only one word sense at a time (or an average notion of
word meaning across all senses). However, word vector models can be augmented to capture
multiple senses (Reisinger and Mooney, 2010; Neelakantan et al., 2014). Jauhar et al. (2015)
present an extension of retrofitting that is capable of capturing multiple word senses.

The word representations explored in this thesis strictly capture meaning of an individual
lexical unit, and are not inherently compositional. For example, adding the vectors of New and
York may not produce a vector which represents the city New York. The methods presented in
this thesis augment existing method of training word representations, and can be extended to
multi-word expressions (MWE), by treating each MWE as an individual word (Baroni et al.,
2012). For example, if we know the vectors New York, Chicago and from a lexicon we know that
both of them are cities, we can apply retrofitting to bring them closer together. There has been
advances in training word representations that can compose together to form representations
of the composed unit (Kiela and Clark, 2013; Vecchi et al., 2013; Paperno et al., 2014).

7.2.3 Bilingual to multilingual

In chapter 6, we show that the quality of word clusters and word vector representations can be
improved by using information extracted from the translational context of a word in another
language. We have currently only experimented with only using a pair of languages at a
time, however, our models are easily extensible to support using translational context of a
word across multiple languages together. For word clustering, this would imply computing
the aligned variation of information between the clustering schemes of all pairs of languages,
instead of just two. Specifically, in our word clustering model, if the monolingual clustering
of one language is represented by Xi for i = 1 · · ·N, with corresponding vocabularies being
vi, given N distinct languages, our new optimization objective is a generalization of Eq. 6.4:
arg min∀i,Xi ∑i H(Xi; vi) + β ∑i 6=j AVI(Xi,Xj).

For enriching word vectors with multilingual information, generalized canonical correla-
tion analysis (CCA) can be used (Vıa et al., 2005; Luo et al., 2015). Generalized CCA projects
the original data from different views into a common space so that the multiple correlation co-
efficient (a generalization of the standard Pearson correlation coefficient) between the random
variables (views) is maximized. In other words, we compute the best low-rank approximation
to the higher-order covariance tensor between all views, instead of the second-order covari-
ance matrix between just two views (Ammar et al., 2016).
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7.2.4 Linear to non-linear models

In chapter 6, we use CCA to project the word vectors from two languages into a space where
they are maximally correlated. CCA is a linear function. Lu et al. (2015) extended our method
to use deep CCA, which first feeds the word vectors in a deep neural network and then applies
CCA on the transformed vectors to obtain improved results. It is claimed that introducing
non-linearities in the structure of the model helps learn better relations in the vector space of
the two languages. On these lines, it would be interesting to see how kernel CCA (Lai and
Fyfe, 2000), which also introduces non-linearity performs in comparison to CCA and deep
CCA.

7.2.5 Multi-class classification

In chapter 5, we treat every morpho-syntactic attribute to be independent of all other at-
tributes. This, is suboptimal as we know that morpho-syntactic attributes are correlated. For
example, if a word is a verb, then it must also possess a tense. Instead of using the binary
relevance method to train a binary classifier for every attribute independently, we can instead
model such correlations as constraints during the learning step to obtain better solutions
(Ghamrawi and McCallum, 2005; Tsoumakas and Katakis, 2006; Read et al., 2011).

We can also treat the morpho-syntactic bundle of every word that it displays in a given
context as a classification unit. For example, the word games can display two morpho-syntactic
bundles {POS:Verb, NUM:Sing} or {POS:Noun, NUM:Plur}. We can train the classifier to
predict both of these as individual units instead of trying to predict {POS:Verb, NUM:Sing,
POS:Noun, NUM:Plur}. These bundles can also be looked upon as different senses that a
word displays in the language.

7.2.6 Task-specific vs. task-independent representations

In this thesis we have exclusively discussed task independent word representations. These
word representations were obtained using various resources that can provide information
about word meaning, and evaluated on a number of tasks. The training of word vectors was
done independently of the evaluation task. Training word representations this way is often
sufficient for use in tasks, but it has been shown that tailoring them for a specific task at
hand gives improved results (Socher et al., 2013; Bansal et al., 2014; Ling et al., 2015b; Dyer
et al., 2015). Although task-specific representations provide better results, obtaining them for
every task individually is cumbersome. An easy way to train task-specific word vectors is to
initialize them using the methods described in this thesis, and further tune them as part of
the training objective of the end task. Many of the results presented in this thesis, for example
sentiment analysis, can be improved with task-specific training. The decision between task-
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specific and task-independent representations is a good philosophical question, an exploration
of which I leave to future work.
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Appendix A

Word Vector Models

Recurrent Neural Network Word Vectors. The recurrent neural network (RNN) language
model maximizes the log-likelihood of the training corpus for the task of language model-
ing using RNNs. The architecture consists of an input layer, a hidden layer with recurrent
connections to itself, an output layer and the corresponding weight matrices (Mikolov et al.,
2013b). The input vector wt represents input word at time t encoded using 1-of-N encoding
and the output layer yt produces a probability distribution over words in the vocabulary V.
The hidden layer maintains a representation of the sentence history in st. The values in the
hidden and output layer are computed as follows:

st = f(Uwt + Wst−1)

yt = g(Vst)

where, f and g are the logistic and softmax functions respectively. U and V are weight matrices
and the word representations are found in the columns of U. The model is trained using back-
propagation. Since this model implicitly encodes the information about the position of words
in the sentence, it induces word vectors with syntactic properties. We use the RNNLM toolkit1

to induce these word representations.

Skip Gram. In the RNN model, most of the complexity is caused by the non-linear hidden
layer. This is avoided in the new model proposed in Mikolov et al. (2013a) where they remove
the non-linear hidden layer and there is a single projection layer for the input word. Precisely,
each current word is used as an input to a log-linear classifier with continuous projection
layer and words within a certain range before and after the word are predicted. These vectors
are called the skip-gram vectors. If a context word c occurs with the target word w, then the

1http://www.fit.vutbr.cz/~imikolov/rnnlm/
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optimization maximizes the following objective:

l = ∑
w∈Vw

∑
c∈Vc

count(w, c)log σ(w · c) +
k

∑
i=1, n∼q

log σ(w · n)

where, Vw and Vc are the vocabulary of target and context words respectively. σ(·) is the
logistic function, k is the number of noise words drawn from the noise distribution q with n
being the noise word. count(w, c) counts the co-occurrence of the two words w and c. Google
has released vectors trained using this model on 100 billion words of Google news dataset of
length 300, which we often use in experiments throughout this thesis. A variant of this model
in which the word is predicted given the contextual words is called the continuous bag of
words model (CBOW). These vector models have been collectively released in the word2vec
toolkit.2

CWindow and Structured Skip-Gram (SSG). Ling et al. (2015b) propose a syntactic modifi-
cation to the word2vec models that accounts for word order information, obtaining state-of-
the-art performance in syntactic downstream tasks.3

CBOW with Attention (Attention). Ling et al. (2015a) further improve the word2vec CBOW
model by employing an attention model which finds, within the contextual words, the words
that are more relevant for each prediction. In other words, it learns to identify and weigh
probabilistically the importance of each contextual word. These vectors have been shown to
benefit both semantically and syntactically oriented tasks.

Glove. Global vectors for word representations (Pennington et al., 2014) are trained on ag-
gregated global word-word co-occurrence statistics from a corpus, and the resulting represen-
tations are shown to display interesting linear substructures of the word vector space. These
vectors were trained on 6 billion words from Wikipedia and English Gigaword and are of
length 300.4

Global Context. These vectors are learned using a recursive neural network that incorpo-
rates both local and global (document-level) context features (Huang et al., 2012). These vec-
tors were trained on 1 billion words of English Wikipedia and are of length 50.5

2https://code.google.com/p/word2vec
3https://github.com/wlin12/wang2vec
4http://www-nlp.stanford.edu/projects/glove/
5http://nlp.stanford.edu/~socherr/ACL2012_wordVectorsTextFile.zip
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Multilingual. Faruqui and Dyer (2014b) learned vectors by first performing SVD on text in
different languages, then applying canonical correlation analysis (CCA) on pairs of vectors
for words that align in parallel corpora. The monolingual vectors were trained on WMT-2011
news corpus for English, French, German and Spanish. We use the English word vectors
projected in the common English–German space. The monolingual English WMT corpus had
360 million words and the trained vectors are of length 512.6

Latent Semantic Analysis (LSA). We construct word-word co-occurrence matrix X; every
element in the matrix is the pointwise mutual information between the two words (Church
and Hanks, 1990). Then, truncated singular value decomposition is applied to factorize X,
where we keep the k largest singular values. Low dimensional word vectors of dimension k
are obtained from Uk where X ≈ UkΣVk

T (Landauer and Dumais, 1997).

GloVe+WN, GloVe+PPDB, LSA+WN, LSA+PPDB. We use retrofitting (Faruqui et al., 2015)
as a post-processing step to enrich GloVe and LSA vectors with semantic information from
WordNet and Paraphrase database (PPDB) (Ganitkevitch et al., 2013).7

6http://www.wordvectors.org/web-eacl14-vectors/de-projected-en-512.txt.gz
7https://github.com/mfaruqui/retrofitting
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Appendix B

Additional Benchmarks for Qvec

Apart from the extrinsic evaluation dataset described in §3.2, we use additional text classifi-
cation datasets for computing correlation between performance of word vectors on extrinsic
tasks and Qvec.

20 Newsgroup Dataset. We consider four binary categorization tasks from the 20 News-
groups dataset.1 Each task involves categorizing a document according to two related cate-
gories with training/dev/test split in accordance with Yogatama and Smith (2014): (1) Sport:
baseball vs. hockey (958/239/796) (2) Comp: ibm vs. mac (929/239/777) (3) Relig: atheism
vs. christian (870/209/717) and (4) Science: medical vs. space. We train an `2-regularized
logistic regression classifier on average of the word vectors of a given sentence as features.
Classifier is tuned on the dev set and accuracy is reported on the test set.

Metaphor Prediction. A metaphor is a type of conceptual mapping, where words or phrases
are applied to objects and actions in ways that do not permit a literal interpretation. For
example, my car drinks gasoline is a metaphor, as a car can not drink gasoline literally. We use
a state-of-the-art metaphor prediction system which takes word vectors as inputs for training
and prediction (Tsvetkov et al., 2014b).2 The system uses word vectors as features in a random
forest classifier to label adjective-noun pairs as literal/metaphoric. We report the system
accuracy in 5-fold cross validation.

1http://qwone.com/~jason/20Newsgroups
2https://github.com/ytsvetko/metaphor
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Agić, Ž., Aranzabe, M. J., Atutxa, A., Bosco, C., Choi, J., de Marneffe, M.-C., Dozat, T., Farkas,
R., Foster, J., Ginter, F., Goenaga, I., Gojenola, K., Goldberg, Y., Hajič, J., Johannsen, A. T.,
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